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Abstract

Colour-matching functions (CMFs) in standard colour-matching experiments con-
sistently peak at three wavelengths, known as the Thornton primaries. This paper
derives the CMFs’ peaks from a geometric construction, the unit-power hull U, whose
shape explains the observed consistency. The spectrum locus vectors consist of all the
colours (as vectors in three-dimensional colour space) that arise from single-wavelength
spectral power distributions (SPDs) of some unit power. The convex hull of the spec-
trum locus vectors will be called the unit-power hull U; it is the set of all colours that
can be produced with unit power or less. Now choose three monochromatic SPDs (rea-
sonably spread out over the spectrum) for a colour-matching experiment; equivalently,
assign a basis to three-dimensional colour space. To find the peak for one primary’s
CMF, use the vectors for the other two primaries to generate a plane in colour space.
Parallel-translate that plane across U; the farthest possible translation point is the tip of
the spectrum locus vector for the peak wavelength of the first primary’s CMF. The rel-
ative pointedness of U at these vertices limits the set of farthest points to three narrow
wavelength bands, centered on the Thornton primaries.

Index Terms: Thornton primaries, primary, colour-matching function, spectrum locus, con-
vex hull

1 Introduction

The human retina’s long-, medium-, and short-wavelength cones respond with varying in-
tensity to different wavelengths in the visible spectrum (between about 400 and 700 nm).
A cone response curve gives the intensity of a cone’s output as a function f(λ), where λ
denotes wavelength. Since no one has yet measured cone responses directly, a mathemat-
ically equivalent colour-matching experiment is used, in which observers view a bipartite
field, consisting of two adjacent spectral power distributions (SPDs), each of which has a
certain physical power level as a function s(λ) of wavelength λ. Even when the SPDs are
very different physically, a human observer might perceive their colours as identical.

In a typical colour-matching experiment, one half of the field displays a monochromatic
SPD, i.e. one whose power is restricted to a single wavelength. In the other half, an observer
superposes three other monochromatic SPDs, called primaries, varying their power levels
until a colour match is obtained. (In case no match can be made, one of the three primaries
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can be transferred to the first half of the field, and power levels adjusted until a match occurs;
the transferred primary is then assigned a negative power level.) The observer steps through
individual target wavelengths, typically from 400 to 700 nm in steps of 10 nm, making a
match at each step. A colour-matching function (CMF) for a certain primary specifies, for
each wavelength, the power level required of that primary in the colour match. A bipartite
colour-matching experiment therefore results in three CMFs, all of which are functions over
the visible spectrum. Further mathematical analysis allows each colour to be expressed as
a vector in a three-dimensional vector space V, sometimes called colour space. Not every
vector in V corresponds to a real colour; some vectors are interpreted as imaginary colours,
that cannot be produced physically.

Many different sets of primaries can be used, each producing a different set of CMFs. In
fact, though, the CMFs for one set of primaries can be mathematically calculated from a
second set (Sect. 4.4 of Ref. 1). Furthermore, one can even work with imaginary primaries,
whose SPDs require negative power levels at some wavelengths. Though experiments with
imaginary primaries cannot actually be performed, their CMFs can be calculated from the
CMFs for real primaries. A well-known example is the CMFs x̄(λ), ȳ(λ), and z̄(λ), standard-
ized in 1931 by the Commission Internationale de l’Éclairage (CIE),2 and shown in Figure
1.
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Figure 1: The CIE 1931 Colour-Matching Functions

Like others before him, Thornton3 examined plots of many CMFs, produced from many
different sets of primaries. Each CMF seemed to have a clear peak at a single wavelength,
so any set of primaries produced three distinct peak wavelengths. Furthermore, the peaks
varied only slightly when the the primary stimuli were changed. By averaging the peak
wavelengths of a large set of CMFs, Thornton arrived at three wavelengths, now called the
Thornton primaries, which we will denote by T1, T2, and T3. If the observed field subtends
2 degrees as it does for the 1931 standard, then the Thornton primaries are 447, 541, and
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604 nm; for a field that subtends 10 degrees, they are 446, 538, and 600 nm (see Table 1 of
Ref. 3).

This consistency of peak wavelengths raises some questions. To begin with, the 447 nm
primary seems more stable than the other two: Thornton (again, see Table 1 of Ref. 3) found
an average deviation of only 0.4 nm around 447 nm, but average deviations of 3 or 4 nm
around 541 and 604 nm. Why should there be such a difference? Furthermore, the Thornton
primaries seem to occur strongly for monochromatic primaries, but more weakly for other
primaries, especially imaginary ones. Even though the CMFs x̄(λ) and z̄(λ) in Figure 1 peak
very near the Thornton primaries, for instance, the CMF ȳ(λ) peaks at 555 nm, a full 14
nm away from the 541 nm Thornton primary. Why do Thornton’s results hold more or less
strongly for different primaries chosen for a colour-matching experiment?

The three-dimensional shape of the geometric construction presented in this paper an-
swers these questions, showing visually why the Thornton primaries appear regularly, but
not invariably. When working in V, the colours corresponding to the Thornton primaries
form a figure that we will call the Thornton tetrahedron, T . Another important object in
colour space is the unit-power hull U , which consists of all the colours that can be produced
by an SPD whose total power is no more than some unit power. U is a convex polyhedron,
each of whose vertices is the colour vector for a unit-power monochromatic SPD. Figure 2
shows U , in multiple views, and Figure 3 shows T inside U , where it can be seen to be a
good approximation.
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Figure 2: The Unit-Power Hull U (Top Right: View along X-axis; Bottom Left: View along
Y -axis; Bottom Right: View along Z-axis)
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Figure 3: The Thornton Tetrahedron T as an Approximation to the Unit-Power Hull U

This paper will demonstrate mathematically that the peak wavelengths can be expressed
as solutions to a linear programming (LP) problem on U . Standard linear programming
theory (Theorem 1.7 of Ref. 4) tells us that LP solutions typically occur on the vertices,
which in this case are associated with wavelengths. Every set of primaries leads to its
own LP problem: each pair of primaries defines a plane, which we aim to translate as far
as possible across U . The farthest stopping point occurs at a vertex, and the wavelength
associated with that vertex is the peak wavelength for the primary that was not used in
constructing the plane.

One noticeably pointed vertex occurs at 450 nm, which is the first Thornton primary
(rounded to the nearest 10 nm). The pointedness of the 450 nm vertex allows it to be the
solution to many LP problems, associated with many sets of primaries, which explains why
the first Thornton primary varies so little. The vertices for the other two Thornton primaries
are more rounded, leading to more variation in the LP solutions, and thus more variation in
the CMF peaks.

The three primaries for a colour-matching experiment can be drawn as basis vectors in
the three-dimensional colour space V , where T and U both live. Experimenters usually
choose primaries that are monochromatic and widely spaced, which makes them fairly close
to T—at least in the sense that their LP problems have very similar solutions. This similarity
explains why CMFs so regularly peak close to the Thornton primaries. The CMF peaks for a
closely spaced set of primaries, such as 490, 500, and 510 nm, would deviate significantly from
Thornton’s wavelengths, but experimenters would likely not choose such a set. Imaginary
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primaries, of course, could never be used, but if one calculates CMFs for imaginary primaries
mathematically, then, like the CIE primaries, their peaks can also deviate significantly.
Geometrically, the vector for an imaginary primary could be very far outside U , whereas the
vectors for real primaries are always contained in U . Thus two facts—that monochromatic,
widely spaced primaries tend to occur in practice, and that T approximates U well—explain
why Thornton’s wavelengths occur so frequently.

The paper is organized as follows. First, the relevant colour science objects, such as U ,
are constructed from first principles. Second, since U lives naturally in a three-dimensional
vector space, and some further derivations rely solely on linear algebra rather than colour
science per se, some geometric constructions are described that require only a vector space
setting. Third, the vector space constructions are applied to peak wavelengths; for ease of
understanding, important geometric concepts are illustrated with two-dimensional examples.
Fourth, the foregoing development is applied directly to the Thornton primaries. Fifth, a
geometric analysis and discussion leads to this introduction’s explanations for the regular
appearance of Thornton’s primaries. Finally, some previous results are derived using the
new geometric construction, and a summary is given.

2 Color Science Constructions

The human vision system converts physical SPDs to colour perceptions. An SPD can be
expressed as a function s(λ), in some units of power, over the wavelengths λ in the visible
spectrum, from about 400 to 700 nm. Following common practice, an SPD function in this
paper will be expressed as a discrete set of 31 values at increments of 10 nm from 400 to
700 nm. SPDs can be classified as monochromatic if all their power is restricted to a single
wavelength (or in practice, a narrow band of wavelengths), and polychromatic otherwise. The
monochromatic SPD of unit power at wavelength λ will be denoted 1λ. SPDs can be added
as functions, or multiplied by a scalar, producing in either case new SPDs; if one allows the
mathematical fiction of negative power levels, then the set S of SPDs takes on the linear
structure of a vector space. The 31 monochromatic SPDs define a convenient basis for S.

In a classical colour-matching experiment, two different SPDs are displayed side-by-side,
and an observer adjusts them until their colours appear identical. Notably, very different
SPDs can produce exactly the same colour. A colour in fact, can be defined as an equiv-
alence class of SPDs that produce an identical perception, so any SPD can be assigned to
a colour unambiguously. Furthermore, Grassmann’s laws (Sect. 4.3.2 of Ref. 1) imply that
this assignment is a linear transformation, so the set C of all colours must be a subset of
a vector space V, and empirical research has determined that V, which is sometimes called
colour space, is three-dimensional. Using this transformation, any SPD can be assigned to a
three-dimensional colour vector in V.

In 1931, the Commission Internationale de l’Éclairage (CIE) summarized the results of
bipartite experiments in their Standard Observer.2 A standard set of coordinates, denoted
X, Y, and Z, was chosen for the vector space V. Given any SPD s(λ), the CIE coordinates
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for the colour vector of s(λ) are given by

X(s) =
700 nm∑

λ=400 nm

s(λ)x̄(λ), (1)

Y (s) =
700 nm∑

λ=400 nm

s(λ)ȳ(λ), (2)

Z(s) =
700 nm∑

λ=400 nm

s(λ)z̄(λ), (3)

where x̄, ȳ, and z̄ are colour-matching functions (CMFs) that the CIE also standardized.
Monochromatic SPDs bear a simple yet important relationship to CIE coordinates:

X(1λ) = x̄(λ), (4)

Y (1λ) = ȳ(λ), (5)

Z(1λ) = z̄(λ), (6)

because 1λ takes on the value 1 at wavelength λ and 0 everywhere else. The foregoing
equations show that X, Y, and Z can be interpreted not just as coordinates, but also as
linear functionals, on either the vector space S of SPDs, or colour space V.

Mathematically, fixing coordinates is equivalent to choosing three basis vectors; in our
context, a vector is a colour, and a basis vector is called a primary colour or just a primary.
The primary PX with coordinates XY Z = (1, 0, 0) consists of a set of perceptually identical
SPDs, all of which have negative power at some wavelengths, so it is called an imaginary
colour—it is a mathematical solution that does not exist in the real world. The primary PY
that produces a positive Y but zero X and Z is similarly imaginary, as is the primary PZ
that produces a positive Z but no X or Y. Despite the negative power levels, however, the
associated CMFs (i.e. x̄(λ), ȳ(λ), and z̄(λ)) are non-negative at every wavelength.

Any set of three linearly independent primary colours can constitute a basis for V. In a
typical bipartite field experiment, a linear combination of the primaries fills one side of the
field, and a target colour fills the other side. A subject adjusts the coefficients in the linear
combination until the two sides appear identical. Usually, the target colours cycle through
1400, 1410, etc., until 1700, in which case the coefficients make up the CMFs for that set of
primaries. If a colour match is impossible, then one of the primaries is added to the target
colour, and a match is made with some combination of the remaining two primaries; the
coefficient of the transferred primary is then set to a negative.

Many, in fact most, of the vectors in V are imaginary colours that exist mathematically
but cannot be produced by any SPD whose power level is non-negative at every wavelength.
Since each SPD is a positive linear combination of monochromatic SPDs, and since S is
linearly embedded in V, the colours in V that can be physically produced are non-negative
linear combinations of the colours resulting from monochromatic SPDs, all of which have
CIE coordinates

(X(1λ), Y (1λ), Z(1λ)) = (x̄(λ), ȳ(λ), z̄(λ)) (7)
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for some wavelength λ. Such vectors are called spectrum locus vectors, and the curve their
tips trace out is called the spectrum locus. As one moves to the ends (or slightly beyond
the ends) of the visible spectrum, all the cone responses decrease to zero, so the spectrum
locus vectors approach the zero vector arbitrarily closely; the zero vector will therefore also
be considered a spectrum locus vector. The set of all non-negative linear combinations,
also called the convex cone, of the spectrum locus vectors is just the set C of all physically
possible colours.

A more important set for us is the set U of all colours produced with no more than unit
power. Algebraically, U consists of all linear combinations of the spectrum locus vectors
whose coefficients are non-negative and sum to 1. Geometrically, U is the convex hull of the
spectrum locus vectors. Furthermore, standard convexity theory (Sect. 20 of Ref. 5) tells us
that U is a polyhedron, every vertex of which is the tip of the spectrum locus vector for some
wavelength λ. Figure 2 shows the unit-power hull. The upper left corner shows an off-center
view while the remaining three corners show the three elevations which occur when looking
along the X-, Y -, or Z-axes. In the upper right corner, for example, the X-axis disappears
as it is pointing directly at the viewer’s eye, but the Y -Z-plane is fully visible, and one sees
the projection of U onto that plane.

This section has converted colour-matching data into some objects of colour science in a
three-dimensional vector space. The next section will develop some mathematical tools that
depend solely on a vector space setting, and further sections will apply those tools to the
new objects to reach conclusions about the Thornton primaries.

3 The Vector Space Setting

3.1 Geometric Constructions

The geometric insights that this paper relies on are naturally expressed in a vector space
setting. This section illustrates them with easily understood two-dimensional examples,
which will then be generalized to three dimensions and applied to the relevant colour science
objects.

Consider a convex polygon P in a two-dimensional vector space coordinatized by x- and
y-axes, as shown in Figure 4. The x-value of any point p of P can be found geometrically
by parallel-translating a copy of the y-axis until it contains p, as shown in the figure. That
translated copy intersects the x-axis at some value xp, which is the x-coordinate of p.

Now suppose that we wish to find the point of P with the maximum x-value. Then we
could translate a parallel copy of the y-axis as far as possible to the right, so that it just
touches P at some point q; use L to denote the translate of the y-axis through q. Finding
the coordinate x is equivalent to evaluating the linear functional f(x, y) = x, so, in terms of
linear programming (LP), we are maximizing the linear functional f over a convex polygon.
Standard LP theory (Sect. 1.4 of Ref. 4) tells us that the maximum typically occurs at a
vertex of P , as the figure shows. Surprisingly, this maximum construction depends much
more on y than it does on x. Suppose we use a different coordinate x′ for our basis, but the
same coordinate y. As long as x′ lies on the right-hand side of y, even if it points more up or
down, or its magnitude is increased or decreased, its maximum value would still occur at q.
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Figure 4: A Convex Polygon in the Plane

One could repeat this construction for every vertex of P , yielding the set of parallel lines
shown in Figure 5. Although there is no concept of distance between the parallel lines,
distance ratios can still be found. The line L2 through p2, for example, is twice as far from
the origin as the line L1 through p1, so the x-coordinate for p2 is twice the x-coordinate of
p1. In fact, the vector space could be recoordinatized, leaving the y-axis fixed, but changing
the x-axis to some new x′-axis, as shown in the figure. Then the x′-coordinate for p2 would
still be twice the x′-coordinate for p1, and all other ratios between the parallel copies of
the y-axis would also be preserved. This statement holds for any alternate basis vector, no
matter in what direction it points, or how far it extends. If one plotted the x-coordinates of
the vertices as a function over a line with equally spaced points indicating the vertices, then
choosing a new coordinate x′ would leave that function’s shape unchanged, but multiply it
by some scalar multiple. (This observation will be used later to prove the result6,7 that a
primary’s colour-matching function maintains its shape even when that primary changes its
wavelength, provided the other primaries do not change.)

The constructions in Figures 4 and 5 generalize to three dimensions, coordinatized by x, y,
and z. In three dimensions, P becomes a convex polyhedron. Rather than parallel-translating
an axis, we will parallel-translate a hyperplane, which in the case of three dimensions is just
an ordinary plane, spanned by two of the basis vectors. Any point p in P can be projected
along the parallel-translated hyperplane through p, onto a unique point on the third basis
vector; this construction is equivalent to finding the third coordinate for p when p is expressed
in terms of that basis. For example, the yz-plane can be translated across P , assigning an
x-coordinate to each point of P . Just before leaving P the plane will intersect the point q at
which x takes on its maximum value. As in the two-dimensional case, LP theory again says
that q typically falls on a vertex of P , which we can associate with the vector joining 0 to q.
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3.2 Application to Peak Wavelengths

The discussion in the previous section allows a geometric interpretation of peak wavelengths,
which will shed some light on the Thornton primaries.

We will work in the vector space V of colours. The set U , shown in Figure 2, of colours
produced with unit power or less is the convex hull of the spectrum locus vectors, which
appear as its vertices, and will be taken as P . The CIE coordinate X (or one of the other
coordinates) is a linear functional on V. To evaluate X at some colour v, draw through v a
plane parallel to the Y -Z-plane. That plane will intersect the X-axis at the value X(v). If
v is a vertex of U , then v is the colour associated with some 1λ, so, by Equation (1),

X(v) = x̄(λ). (8)

To maximize X, move the parallel plane as far from the origin as possible, while still
touching U . By linear programming theory, this maximum will typically occur at some vertex
of U , which is associated with some wavelength λmax. In fact, we can see geometrically that
x̄(λmax) is as far from the origin as possible, so the maximum value of x̄, i.e. its peak
wavelength, occurs at λmax. We have therefore converted the problem of finding the peak
wavelength into a geometric problem: translating a plane given by two basis vectors as far
as possible from the origin, while still touching U .

This geometric reformulation of peak wavelengths makes clear the dependence of CMFs
and their peak wavelengths on the basis chosen for V. While U is a fixed subset of V, the
choice of basis vectors such as X, Y, and Z is arbitrary, and one could easily select different
vectors. In fact, if monochromatic primaries of wavelengths λ1, λ2, and λ3, are chosen, as
is often done, then the three axes will go right through U : the axes will start at the origin,
and exit U at the spectrum locus vectors for 1λ1, 1λ2, and 1λ3. The planes parallel to pairs
of the new axes will now also shift, as will their intersection values with the remaining axis.
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The amount of the shift, though, will depend strongly not just on the choice of basis,
but also on the shape of U . It will be seen that a condition in which peak wavelengths
do not change when the primaries change requires U to have a few very pointed vertices,
while a smoother, more rounded shape leads to greater variation in peak wavelengths. The
following examples will illustrate these statements in one or two dimensions, from which they
are readily generalized to three dimensions.

3.2.1 One Response Curve

As a first example, let us suppose that a visual system only has one kind of cone instead of
three, and that that cone’s response curve is an inverted parabola over the visible spectrum,
as seen in Figure 6. We then need only one primary, that generates one CMF. Whether
that primary is monochromatic or polychromatic, the CMF will have the same shape as
the response curve, up to some scalar multiple. In fact, such a one-cone system could not
distinguish between wavelengths at all, but could only identify differences in brightness.
(The human night-vision system actually has this structure.)
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Figure 6: Response Curve for a Single Cone

Since the CMF duplicates the response curve, the peak wavelength will always occur at
the wavelength that produces the greatest response (550 nm in this case), and this result
holds regardless of the primary chosen. Colour space for this case would be a one-dimensional
line, and U would be a segment of that line, from 0 to some maximum value; the maximum
value is at the vertex that corresponds to the spectrum locus vector for 550 nm. All the
spectrum locus vectors would lie along the same line segment, though they would differ in
magnitude.
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3.2.2 Two Non-Overlapping Response Curves

Let us now modify the first example by adding a second cone and supposing that the cone
response curves are two inverted parabolas, one over the left half of the visible spectrum,
and the other over the right, as shown in the left half of Figure 7. These curves could
be called non-overlapping because any monochromatic SPD now stimulates only one of
them; a polychromatic SPD, however, could stimulate both simultaneously. Let us choose as
primaries two monochromatic SPDs, one in the right half and the other in the left; denote
by X and Y respectively the coordinates that result when the primaries’ spectrum locus
vectors constitute a basis for colour space.
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Figure 7: Response Curves and Unit-Power Colours for Two Non-Overlapping Cones

The spectrum locus vectors for wavelengths in the left half all lie along the Y -axis; they
fill out a line segment whose maximum reach occurs at the wavelength 475 nm, to which the
first cone responds with the most strength. A similar pattern occurs along the X-axis for
the second cone. Any monochromatic SPD will stimulate only one cone, so its colour vector
lies on one of the axes. A polychromatic SPD s, however, could have some power in the left
half of the spectrum as well as some power in the right half, so it could stimulate both cones
simultaneously. Both coordinates of its colour vector would be positive, so it would lie in
the first quadrant. Since the SPDs we are considering have no more than unit power, the
colour vector of s must be in the convex hull U of the spectrum locus vectors, all of which
lie in two line segments on the X- and Y -axes. U is actually the triangle in the right half of
Figure 7.

According to Equation (4), the value of the CMF for X at wavelength λ is just the
X-coordinate of 1λ. According to the linear algebra arguments developed earlier, the peak
wavelength for X can be found by parallel-translating the Y -axis until it reaches a line L
(shown in Figure 8), which is as far as possible to the right, while still touching U . By linear
programming, L intersects a vertex, which in this case is the spectrum locus vector for 625
nm and happens to fall right on the X-axis. The CMF thus peaks where we would expect
it to, at the wavelength the response curve peaks at. A similar result holds for Y.
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Figure 8: Changing One Primary

The discussion so far has been based on a natural set of primaries, but we will see geo-
metrically that in this case the CMFs peak at the same wavelengths for any set of primaries.
To begin with, suppose that we leave the primary X unchanged for now, but change the
primary Y to some new primary Y ′. In any bipartite field experiment, Y ′ would have to
result from a real primary—i.e. one whose power at any wavelength is non-negative—so its
spectrum locus vector would occur in the first quadrant, cutting through the triangle. (Note
that such a Y ′ would actually be a polychromatic primary, because it stimulates both the
left and the right cones.)

Visually, we would rotate the Y -axis in Figure 8 somewhat to the right, until it reaches
some Y ′, as the figure shows. To maintain parallelism, the line L would rotate the same
amount to the right, ending at some new line L′, as shown. L′ intersects the triangle as far
to the right as possible, so its intersection point occurs at a vertex, and we can see from
the figure that that vertex corresponds to 625 nm, just as it did previously. In fact, if Y
were rotated any amount, while still cutting through the triangle, L′ would still intersect the
triangle at the spectrum locus vector corresponding to 625 nm, so the CMF for X would
peak at 625 nm.

Now that Y has been rotated to some Y ′, we can choose a new second primary by rotating
X to some X ′. As before, X ′ must cut through the triangle U to insure a physically possible
bipartite field experiment. We would draw the line LX′ that is parallel to the X ′-axis, and
intersects the triangle as far as possible from that axis. We can see that, regardless of what
X ′ is chosen, such an LX′ would intersect the triangle at the vertex given by the spectrum
locus vector for 475 nm, just where the first response curve peaks. No matter what new
primaries are chosen, then, for X or for Y, the resulting CMFs will always peak at 475 and
625 nm.
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Geometrically, this invariance of the CMF peaks depends on the shape of U . The vertex
at 625 nm (and the one at 475 nm) is very pointed, in the sense that a line through it could
be rotated through a wide angle while still keeping U completely on its left. This fact allows
us to adjust the Y -axis freely, and gives us complete latitude in choosing the corresponding
primary; the X-axis can be similarly freely adjusted—without changing the CMF peaks. A
subsequent example will show more rounded vertices, in which adjusting the primaries can
alter the CMF peak wavelengths.

3.2.3 Two Overlapping Response Curves

The left side of Figure 9 shows another case of two response curves, but this time their peak
wavelengths are 500 and 600 nm and they overlap slightly. As a result, the wavelengths in
the center third of the spectrum stimulate both cones simultaneously, although the other
wavelengths only stimulate one cone. The right side of the figure shows the set of unit-power
colours, where the X-coordinate results from choosing a primary between 600 and 700 nm,
and the the Y -coordinate results from choosing a primary between 400 and 500 nm. The
triangle that occurred when there was no overlap has now expanded to something more like
a quarter-circle. It can be seen, however, that the behavior with regard to CMF peaks is
identical. The line L parallel to the Y -axis intersects U at the vertex corresponding to 600
nm, and, even if the Y -axis were rotated to any real primary Y ′ within U , the new line
L′ would still intersect U at that vertex. The difference from the triangle is that L now
intersects the vertex nearly tangentially, and that other intersections are at much narrower
angles than previously.
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Figure 9: Response Curves and Unit-Power Colours for Slightly Overlapping Cones

Figure 10 shows a further example of two response curves, peaking at wavelengths 530
and 570 nm, but now with a much more significant overlap. Their unit-power hull is also sig-
nificantly different. The right side of the figure shows a marked protuberance, and indicates
the spectrum locus vectors for various wavelengths. The axes result from choosing primaries,
one between 400 and 440 nm, and the other between 660 and 700 nm, that stimulate only
one cone. In that basis, the line L given by the farthest parallel translation of Y intersects
the unit-power hull at the vertex corresponding to 570 nm, so the CMF for X will peak
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Figure 10: Response Curves and Unit-Power Colours for Significantly Overlapping Cones

there. Now suppose as before that choosing a different primary causes Y to be rotated to a
new axis Y ′. Then the corresponding L′ goes not through 570 nm, but through 590 nm, as
shown, and the CMF’s peak wavelength shifts.

This example shows that CMF peaks, even when restricted to monochromatic primaries,
need not be invariant. Furthermore, one could picture cases, where U is not too flat at a
vertex but not too pointed there either, in which a peak wavelength varies as different sets
of primaries are chosen, but only within a limited interval. The result would be a peak
wavelength that was reasonably consistent in practice, but not perfectly so, which is just the
behavior that the Thornton primaries show.

4 Application to the Thornton Primaries

4.1 CMFs for Different Bases

The previous section showed how the CMFs’ peaks, and their variability as different sets
of primaries are chosen, depend on the shape of the unit-power hull. The examples there
illustrated the relevant geometric concepts in two dimensions. In this section, they will be
applied to three-dimensional human colour space, and explain why the Thornton wavelengths
recur consistently, but with some slight variation.

In three dimensions the convex set P of interest is the unit-power hull U , which is a
polyhedron rather than a polygon. In both two and three dimensions, a hyperplane is
translated across a convex set; in two dimensions a hyperplane is a one-dimensional subspace
generated by a single axis, while in three dimensions a hyperplane is a two-dimensional
subspace, which is just an ordinary plane, generated by two of the axes.

The convexity of U follows by construction, because U is the convex hull of the spectrum
locus vectors. Furthermore, standard convexity theory (Sect. 20 of Ref. 5) tells us that U is
a polyhedron, and that each of its vertices occurs at the tip of a spectrum locus vector. The
unit-power colours are a subset of the convex cone of all colours, which is itself a subset of
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Figure 11: The Unit-Power Hull U , with Two Different Bases

the three-dimensional vector space V.
Numerous bases can be chosen for V. A vector space and a fixed subset S can be visualized

in two natural, mathematically equivalent ways. The first method is to draw the basis vectors
as if they were orthogonal unit vectors in Euclidean space; each point in the subset S can
be expressed as a linear combination of the basis vectors, so the entire subset can be drawn
in this way. In this approach S takes on different shapes when the basis is changed. For
instance, a sphere could be converted to an ellipsoid, or vice versa. The second method,
which will be followed here, is to draw S so that its shape never changes, and then draw
basis vectors where they would occur in relation to S. A new trio of basis vectors would start
at the origin, but point in different directions from the previous trio, while the subset itself
would not look any different.

The left side of Figure 11 shows the unit-power hull U , and highlights the three standard
CIE basis vectors given by coordinates X, Y, and Z. They appear just as they would in a
Euclidean space. Let us leave the subset U fixed, and suppose we are performing a colour-
matching experiment, using monochromatic primaries at 470, 530, and 570 nm. The colour
vectors of these primaries are then taken as a new basis for V. Since they result from real
SPDs, all the new basis vectors must go through U . Since they are monochromatic, they will
lie along the spectrum locus vectors for 470, 530, and 570 nm, as shown in the right side
of Figure 11. Note that U itself is identical in both parts of the figure—only the basis has
changed.

Each basis produces its own set of colour-matching functions, which peak at some set of
wavelengths. Let us start with the CIE 1931 basis, and apply the results of the previous
section. To find where the X-coordinate peaks, we parallel-translate the Y -Z-plane as far as
possible to the right, while still keeping in contact with U . The projected view in the bottom
right corner of Figure 2 makes the operation clear; since the Z-axis is pointing directly out
of the page, we need only translate the Y -axis as far as possible to the right, ending up at
the dotted line. This line intersects U at the vertex corresponding to 600 nm, and we see in
Figure 1 that the CMF x̄ corresponding to X does indeed peak at 600 nm. The peaks for Y
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and Z can be determined similarly to be 450 and 555 (midway between 550 and 560) nm,
agreeing with Figure 1.

Now suppose that we are finding peaks of CMFs for the basis shown in the right half of
Figure 11. To find the peak for the coordinate corresponding to the 570 nm primary, we
construct the plane generated by the 470 and 530 nm primaries. It can be seen from the
figure that this plane is not vertical in the sense that the Y -Z-plane is vertical, but is rather
tilted and rotated somewhat. Nevertheless, it can be translated across U until it just touches
a single vertex, which in this case occurs at the tip of the spectrum locus vector for 600 nm.
Figure 12 shows the actual colour-matching functions, and the peak for the 570 nm CMF
does indeed occur at 600 nm. The other two peaks can be derived similarly, and occur at
450 and 530 nm.
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Figure 12: Colour-Matching Functions for the Primaries 470, 530, and 570 nm

The CMF peaks for the CIE basis and the new basis are nearly identical; the only
difference occurs for the middle peak, which is at 555 nm in one case and 530 nm in the
other—and considering the relatively crude 10 nm bandwidth, a difference of 25 nm might
not be very much. As early as 1953, MacAdam6 had observed that the CMF peaks seemed
“amazingly similar,” regardless of the primaries chosen. Thornton3 estimated the peaks by
choosing a representative sample of 792 bases (each with the first primary between 410 and
580 nm, the second between 490 and 570 nm, and the third between 580 and 680 nm), and
averaging the peaks of the resulting CMFs. The results (for the 1931 Standard Observer)
were the Thornton primaries of 447, 541, and 604 nm. Furthermore, the average deviations
for the peak wavelengths were very small, at 0.4, 2.4, and 3.9 nm respectively (see Table 1 of
Ref. 3). His results therefore demonstrate quantitatively that CMF peaks show considerable
consistency. The rest of the paper will show the geometry origins of this consistency.
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4.2 Geometric Explanation

The geometric expositions of our previous examples explain both the consistency of the
Thornton primaries, and the fact that that consistency is not perfect. The main conclusion
is that the shape of U , and in particular the pointedness of its vertices, is responsible for
both the approximate consistency and for the degree of variability.

The most noticeable feature of U , as seen in Figure 2, is the sharp vertex, like the apex
of a pyramid, appearing at 450 nm. This feature recalls the vertices seen in the triangle in
Figure 7. In both cases a large variety of hyperplanes, at a wide range of orientations, reach
their maximum point in U at a single vertex. The hyperplane of interest in the basis in the
right side of Figure 11, for example, is parallel to the plane spanned by the 530 and 570 nm
primaries, both of which are nearly in the CIE X-Y -plane. Even if these two primaries were
changed significantly, as long as they both remain above about 480 nm and separated by at
least 20 nm or so (two very natural conditions in practice), the plane they generate will not
be tilted enough from the plane through 530 and 570 nm to move the farthest intersection
point with U from the 450 nm vertex. As a result, Thornton found an average change of only
0.4 nm over 792 cases, so that the 450 nm peak is effectively constant for practical purposes.
Similar arguments apply, though not as strongly, to the peaks at 540 and 600 nm. Rather
than a sharp apex, the spectrum locus vectors for the latter two values show sharp edges,
which curve away from the vertices gradually, rather than exhibiting the sharp point seen at
450 nm. The gradual curving away is similar to the behavior seen in the right side of Figure
10, and unlike the behavior in the right side of Figure 7. A small adjustment in the touching
hyperplane, then, changes one of these vertices more than the 450 nm vertex (2.4 or 3.9 nm
vs. 0.4), but the two vertices are still sharp enough that any likely changes are limited.

Figure 3 unifies the arguments for all three peaks. That figure shows the Thornton
tetrahedron T , formed by the spectrum locus vectors of the Thornton primaries T1, T2, and
T3. Three faces of the tetrahedron touch the origin. Typically, primaries are chosen to be
fairly evenly spaced within the visible spectrum. Furthermore, since the Z-component is
very near 0 in the right half of the spectrum (see Figure 1), the spectrum locus vectors from
550 to 700 nm lie almost perfectly within the X-Y -plane, and U is almost flat there.

As a result, the plane spanned by the two primaries of longest wavelengths is not too
different from the 0-T2-T3 face of the tetrahedron. Similarly, since the primary of shortest
wavelength is usually less than 500 nm, the plane spanned by the spectrum locus vectors
of the two shorter wavelength primaries is not tilted too much from the 0-T1-T2 tetrahedral
face, and the remaining plane, spanned by the primaries of shortest and longest wavelengths,
is not tilted too much from the 0-T1-T3 face. When any face of T is translated across U , is
should reach its maximum at the opposing vertex of the tetrahedron—and all three of those
vertices occur as Thornton primaries. Since the vertex at 450 nm is extremely pointed, and
the other two are moderately sharp, the maximizing vertices do not change much. In this
way, the CMF peak wavelengths are constrained to three narrow regions of the spectrum,
over a wide range of sets of primaries, which is just the behavior observed empirically.

To sum up the geometric arguments, the consistency of the CMF peak wavelengths
depends on two facts:

1. Typical primaries are monochromatic and widely spaced across the visible spectrum, and

2. The Thornton tetrahedron T is a good approximation to the unit-power hull U .
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The first fact results from practical considerations. A set of closely spaced primaries
such as 490, 500, and 510 nm, for instance, produces peak wavelengths at 440, 500, and 600
nm, missing the second Thornton primary by 40 nm—such a choice would be very unusual
in practice, however, because most experimenters would tend to cover the spectrum more
evenly. Using monochromatic primaries insures that the corresponding basis vectors lie on
the boundary surface of U , while a basis vector for a polychromatic primary would go through
the interior of U . If the basis vectors travelled through the interior, the resulting planes could
easily deviate significantly from the Thornton tetrahedron, while vectors on the boundary
will produce planes that are much closer to the faces of T .

Another practical restriction is that the chosen primaries must be real, so that they
could actually be produced for a colour-matching experiment. The middle peak of the CIE
CMFs, shown in Figure 1, occurs between 550 and 560 nm, about 15 nm to the right of the
Thornton primary of 540 nm, six times larger than Thornton’s average deviation of 2.4 nm.
The CIE primaries, though, are imaginary, so their spectrum locus vectors only intersect
U at the origin; they are otherwise completely exterior. Any real primaries, however, must
travel through some subset of U for some interval before exiting. The argument that planes
generated by pairs of primaries are close to the faces of the Thornton tetrahedron require
those primaries to be contained in U , so they must be physically possible SPDs rather than
mathematical fictions.

The second fact results from the geometry of colour perception. An exhaustive calculation
shows that T has a larger volume (as a percentage of U) than any other tetrahedron formed
similarly from three spectrum locus vectors. Heuristically, a volume-maximizing tetrahedron
in a convex set should approximate that set’s shape as well as possible, or else moving one or
more vertices of the tetrahedron around in the set could increase the tetrahedron’s volume.
The vertices of such a volume-maximizing approximation would be expected to fall along
any extreme protrusions of the convex set being approximated. In this case, of course, the
tetrahedron correctly identifies the pointed protuberance at 450 nm. Overall, then T is a
good proxy for empirical colour-matching data, so it is not surprising that its vertices show
up consistently as the Thornton primaries.

4.3 Relation to Some Previous Work

Our constructions can also be used to demonstrate geometrically some results that had
previously been proved algebraically. One result is due to Brill and Worthey7 in 2006, and
another to MacAdam6 in 1953. Both these results assert—very counterintuitively—that the
CMF for a primary depends very little on that primary itself, but depends very much on
the other two primaries. In fact, once two primaries are fixed, the shape of the CMF for the
third primary is determined, and specifying the wavelength for that primary’s wavelength
only scales that shape by some constant multiple. The geometric reasoning of the current
paper makes these assertions intuitively clear.

In some online notes, Brill and Worthey use matrix manipulations and Cramer’s rule to
prove the following result: Suppose there are three monochromatic primaries (call them λ1,
λ2, and λ3) with corresponding CMFs x̄1(λ), x̄2(λ), and x̄3(λ); if λ1 is changed to a different
wavelength λ′1, but λ2 and λ3 remain the same, then the CMF for λ′1 is a scalar multiple
of x̄1(λ). This same result can be seen geometrically. The values of the CMF for the first
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primary are determined by translating the plane generated by the other two primaries. To
find the value of the first CMF at some wavelength λ, translate that plane until it touches
the tip p of the spectrum locus vector for λ, as in Figure 4, and project onto the appropriate
axis. When all the translations for all the wavelengths are made, the result will be a three-
dimensional version of Figure 5, with P replaced by U and the lines replaced by planes.
While the magnitudes of the coordinates along the x-axis will change if x is replaced by
some new vector x′, the ratios of the coordinates remain identical. Since the coordinates
along a primary’s axis are just the CMF values for that primary, the CMFs resulting from
x and x′ will be scalar multiples, as Brill and Worthey asserted.

MacAdam’s result is similar. As the first line of his abstract says: “The shape of the
color-mixture curve for any primary is completely determined by the choice of the line in the
chromaticity diagram representing the additive mixture of the other two primaries.” Once
one recalls that the chromaticity diagram lies in the affine subspace X+Y +Z = 1 of V, one
sees that the linear span of the origin and a line in the chromaticity diagram is a plane P
in V. Since this line represents “the additive mixture of the other two primaries,” the plane
P itself is the linear span of those two primaries, so it is just the plane that we have been
parallel-translating to evaluate the peak wavelength of the CMF for the first primary, and,
considering Figure 5, the value of that CMF at any wavelength. The parallel translation,
and the relative spacing of the projections onto the first primary, do not actually depend on
the direction of the first primary, which can only assign relative values that change the size
of its CMF but keep its shape the same.

5 Summary

This paper has explained geometrically why CMFs tend to peak around the Thornton pri-
maries in practical applications. The unit-power hull U , a convex polyhedron which encodes
the results of colour-matching experiments, was constructed as the convex hull of spectrum
locus vectors. Choosing three primaries for such an experiment is equivalent to choosing a
basis of the three-dimensional colour space V, where U lives. Each primary has an associated
CMF, whose peak wavelength is the solution to a linear programming problem: the wave-
length corresponding to the vertex on U at which that primary attains a maximum value is
that primary’s peak wavelength. Surprisingly, the solution to this problem depends more on
the other two primaries than it does on the primary of interest. The basis vectors for the
other two primaries generate a plane in V, which can be parallel-translated over U to the
farthest vertex possible, whose wavelength is the first primary’s peak.

These constructions show that peak wavelengths depend on the shape of U . That shape is
approximated well by the Thornton tetrahedron T , which is the pyramid formed by the colour
vectors for the Thornton primaries. As long as an experimenter chooses three monochromatic
primaries that are fairly widely spaced across the visible spectrum, the planes mentioned
in the previous paragraph will be approximately parallel to the faces of T , and this fact,
combined with the sufficient pointedness of T ’s vertices, insures that those vertices will not
change much as the experimenter’s primaries change, explaining the consistent CMF peaks
that have been observed in practice.
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