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Abstract

The center of a convex set is the point, if such a point exists, that bisects every chord
through that point; this definition is very restrictive, and the center exists only for highly
symmetrical convex sets. This paper introduces the quasi-center as a generalization of
the center, for compact convex planar sets. Suppose we have a point in such a set, and
a chord through that point. Then the point divides the chord into two segments, and one
can find the ratio of the shorter segment to the entire chord; call this ratio the cut-ratio.
This cut-ratio is between 0 and 0.5, and the nearer it is to 0.5, the better that point
does at bisecting that chord. For a particular point, we can take the minimum cut-ratio,
over all the chords through that point, as an overall estimate of how closely that point
bisects the chords through it. The minimum cut-ratio is a function whose domain is
the points in a compact, convex set. The point with the highest minimum cut-ratio will
be called the quasi-center. This paper shows that a compact, convex planar set (though
not necessarily a set in higher dimensions) has a unique quasi-center, and presents a
geometrically intuitive construction to find that quasi-center. Several examples show
that the quasi-center is different from the center of mass, although the two are usually
very close. A notable feature of the quasi-center is that it does not require any Euclidean
concepts like length and angle: a vector space and its operations are sufficient for its
definition and construction.

1 Introduction
A convex set C is a subset of Rn such that, if C contains two points p1 and p2, then C also
contains the line segment joining p1 and p2. Convex sets are “solid,” in the sense that they
contain no holes or inlets, and boast many regularities, such as well-defined areas, perimeters,
and integer dimensions. Furthermore, they can often be specified conveniently and concisely,
as linear combinations (whose coefficients are non-negative and sum to 1) of a set of points,
or as the intersection of a set of half-spaces.

In many simple, regular cases, such as circles or parallelograms, a convex set has a natural
center. Even for an irregular convex set, however, geometric intuition tends to identify a
center, or at least a small region that is centrally located. Various definitions have formalized
the notion of center. Technically, the center of a convex set C (see p. 54 of Ref. 1, and Ex.
13.11 of Ref. 2) is the point p that bisects every chord through p, where a chord is the
intersection of C with a line through the interior of C. While a natural definition, such a
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center rarely exists. In this paper, this definition of center will be referred to as the bisection
center.

This paper proposes a new definition, the quasi-center, that provides a reasonable notion
of “center” for any compact convex planar set C. The quasi-center is the result of a visually
appealing, dynamic geometric construction, that involves sliding shrunken copies of C along
the boundary of C. The quasi-center was developed to make up for the shortcomings of the
bisection center. While a point of C that bisects every chord it lies on usually does not exist,
it seemed that there should exist a point that comes as close as possible to bisecting every
chord. This paper proves not only that such a point exists, but that it is unique, and this
point was named the quasi-center.

More formally, suppose that p is a point of a compact convex planar set C, and that ch
is a chord through p. Then p cuts ch into two segments. The ratio of the shorter segment to
the total chord will be called the cut-ratio, and denoted α. Of course, there are many chords
through p, and many cut-ratios. The minimum cut-ratio, over all the chords through p, will
be denoted M(p). M(p) can be thought of as the most uneven division of a chord that p
accomplishes. M(p) is always positive and bounded above by 0.5. If M(p) = 0.5, then p is
a bisection center, because it cuts each chord through it into two equal sections. If M(p) is
near zero, then p cuts at least one chord very unevenly, so p is not a good candidate for the
center. We will define the quasi-center of C to be the point p ∈ C that maximizes M(p), and
the value of M at the quasi-center will be denoted µ.

A geometric method will be given that finds the quasi-center. Denote a level set of the
function M(p) by Mα, for a given value α; formally, Mα = {p ∈ C|M(p) ≥ α}. It will be
shown that Mα is a closed convex set, that can be constructed geometrically, as shown in
Figure 1. In that figure, C is the large triangle. The left side of the figure shows some grey
triangles, which are translations of αC, the homothety of C by the factor α. The homothety
αC is slid around the perimeter of C, sweeping out the grey region shown on the right of the
figure. The remaining region, that is not coloured grey, is the set Mα. Mα can be thought
of as indicating a central region of C, that is at some distance from the boundary of C. As
α increases, the grey region on the right becomes larger, and the set Mα becomes smaller.
Eventually, α will reach some value µ, which is probably less than 0.5, at which Mµ is a
single point—that point is the quasi-center.

The definitions and constructions in this paper have been carefully formulated to avoid
metric concepts such as length or angle. This restriction arose from practical considera-
tions. While analyzing some colour constancy algorithms, examples arose of convex sets in
a chromaticity diagram. The chromaticity diagram was a vector space of dimension two,
but there was no natural idea of the distance between two chromaticities, nor the angles
between vectors terminating at different chromaticities. Any operations on the convex sets
could therefore involve only vector space properties.

While convex sets are often considered in a Euclidean setting, where concepts like per-
pendicularity or shortest distance are defined, convexity can also be considered in a pure
vector space setting, with no Euclidean structure. Many seemingly Euclidean definitions,
such as the bisection center, in fact do not need Euclidean notions at all. For example, the
ratio of the “length” of a segment of a chord to the “length” the chord itself can be recast
as a linear relationship between two parallel vectors; the coefficient in that relationship can
provide the ratio, without assigning lengths to vectors. To insure wide applicability, this pa-
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M
\alpha

Figure 1: A Dynamic Geometric Construction for Mα

per works only with vector spaces, using only vector space properties; no metric structures
are imposed.

This paper is organized as follows. First, convexity is discussed in a vector space setting.
Next, some current definitions of centers for convex sets are described, and the definition of
the quasi-center is introduced. Then, a dynamic geometric construction for the quasi-center
is developed; this construction is used to prove that the quasi-center for a planar set exists
and is unique, and also provides a practical algorithm for calculating it. Higher-dimensional
extensions are discussed, and it is seen that a quasi-center is not necessarily unique for non-
planar sets. Finally, the quasi-center is compared with other definitions. Standard results
about convexity are used freely, usually without specific attribution; such results can be
found in References 1 and 2.

2 Definitions

2.1 Convex Sets in a Vector Space

Convex sets were originally defined in the context of Euclidean geometry, and many results
in convexity only apply in a Euclidean space. To define a convex set, however, a Euclidean
space is not needed: a vector space by itself has sufficient structure. This paper will restrict
itself to the vector space setting, and will not assume that any metric notions such as length
or angle are present. As a consequence, the results and algorithm will apply very broadly.
This section will outline the vector space properties that are needed for the development of
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the quasi-center.
The vector space approach was motivated by an application of convex sets to colour

constancy algorithms.3 The chromaticity of a colour stimulus encompasses that colour’s hue
(red, orange, green, etc.) and saturation (whether the colour is a vivid version of a hue, or a
dull, greyed-down version), but not its lightness (how light or dark that colour is). The set
of chromaticities can be represented in a chromaticity diagram, which is a two-dimensional
vector space. In this vector space, however, there is no distinguished basis, and no natural
idea of the distance between two chromaticities, nor the angles between chromaticity vectors.
The grey-world hypothesis is an heuristic that asserts that the set of chromaticities in a camera
image is on average the chromaticity of the illumination under which that image was taken.
The set of all possible chromaticities must be a convex set, and estimating the illuminant
requires finding that set’s average or center, in some sense. Since the chromaticity diagram
has no Euclidean structure, the center of this convex set must be found using only vector
space properties.

The main requirement to define convexity is that a unique line segment can be drawn
between any pair of points, and a vector space allows such segments to be constructed.
Suppose we have a real vector space Rn, and two vectors v1 and v2 in Rn. Then define the
line segment between v1 and v2 by

S(v1,v2) =

{ 2∑
i=1

βivi

∣∣∣∣0 ≤ βi ≤ 1 ∀i and
2∑
i=1

βi = 1

}
. (1)

Geometrically, this set gives a parameterized path from the interval [0, 1] into V, as can be
seen by rewriting Equation (1) as

S(v1,v2) = {β1v1 + (1− β1)v2|0 ≤ β1 ≤ 1}. (2)

The path starts at v2, when β1 = 0, and ends at v1, when β1 = 1. The vectors defined by
Equation (1) are called convex combinations of v1 and v2. If an inner product provided the
vector space with a Euclidean structure, then this path would correspond to the Euclidean
straight line segment between the points.

This algebraic line segment is sufficient to make the following definition: a subset C of
Rn is convex if and only if, for every pair of points v1 and v2 in C, the straight line segment
given by Equation (1) is also in C. For this paper, we will further require C to be compact,
in the standard topology of Rn. Compactness implies that C is closed, and so it contains its
boundary. More importantly, it implies that C is bounded, which is necessary for a center
to exist at all. Another restriction is that C should have non-empty interior; this restriction
could easily be lifted, however, by working in the smallest affine subspace that contains C.

One consequence of convexity is that a straight line that intersects the interior of a
compact convex set C also intersects C in exactly two boundary points. A chord of C is
defined to be the intersection of C with such a straight line. If b1 and b2 are the two
boundary points, then the corresponding chord ch is just the line segment S(b1, b2).

Even if a vector space V has no metric structure imposed on it, operations such as
vector addition and scalar multiplication are still possible. In addition, relations of linear
dependence and independence, between vectors or sets of vectors, can be determined. Parallel
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translation is always defined, and one can always write a vector as a unique scalar multiple
of a parallel vector. These properties allow us to divide a line segment in any ratio desired.
Furthermore, if a point is on a line segment, we can determine the ratio in which that point
cuts the segment; this ability will be used when we investigate how near a would-be center
comes to bisecting the chords through that center. We can also use the ratio property to
construct homotheties of a set, based at a given point.

2.2 Current Definitions of the Center of a Convex Set

Currently, there are several common definitions of the center of a compact convex set C,
some of which require a Euclidean metric. The Chebyshev center, for instance, is the center
of the incircle or circumcircle of C, but Euclidean notions are required to define incircles
and circumcircles. A related center can be defined in terms of Löwner-John ellipsoids,4 but
again, Euclidean notions are required to evaluate how well such an ellipsoid fits C. Only two
definitions, the bisection center and the centroid (or perhaps more correctly, the center of
mass) are metric-free. This section presents those definitions. Later sections will compare
them with the proposed quasi-center.

2.2.1 The Bisection Center

What this paper calls the bisection center of C is typically called just the center. It is the
point c ∈ C, if such a c exists, that bisects any chord through c. If c exists, then it is unique.
(A simple proof: draw the chord ch through two possible centers, c1 and c2. Both c1 and c2
bisect ch, so they must both be located at its unique midpoint, and are therefore identical.)
In the cases where it exists, the bisection center is a simple, natural definition. As a general
definition, however, the bisection center is largely inadequate, because it rarely exists, unless
C exhibits rotational symmetry. Even then, many highly symmetrical set, such as regular
polygons with an odd number of sides, which one would expect to have a bisection center,
turn out not to. For example, a regular pentagon has no bisection center, although a regular
hexagon does. The bisection center, however, does have the advantage of being metric-free.
Its bisection test only requires determining the ratio in which a point divides a chord, which
we have seen is defined in a general vector space, without a concept of length. Though its
application is limited, it seems desirable that any other definition of center should reduce to
the bisection center whenever possible, as we will see that the quasi-center does.

2.2.2 The Centroid, or Center of Mass

Another common definition, that is often taken as the center of C, especially in physical
applications, is the centroid. The centroid can account for cases when C has a varying
distribution, say of mass or electrical charge. When the distribution is uniform, the term
center of mass is sometimes used instead. For simplicity, this paper will both use the term
centroid, and assume that any distribution over C is uniform.

Suppose that C is a compact convex subsect of Rn, and that Rn has coordinates xi, x2, . . . , xn.
Then Cartan’s exterior algebra allows us to define a volume form, which is a multilinear,
alternating function of n vectors. Typically the volume form is written dx1dx2 . . . dxn. A
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volume form allows integrals to be evaluated over chains, such as compact convex sets. This
formalism allows us to define the coordinates xci of the centroid of C by

xci =

∫
C xidx1dx2 . . . dxn∫
C dx1dx2 . . . dxn

. (3)

(To be thorough, we must also prove that this definition is independent of the basis. Suppose
there is another basis, given by a change-of-basis matrix T. Indicate the new basis by the
superscript 2. Then the two volume forms dx1dx2 . . . dxn and dx2

1dx
2
2 . . . dx

2
n are related by

the multiplicative factor det(T ). Then the constant det(T ) will divide out of the numerator
and denominator in Equation (3), leaving xc2 = Txc, which is the same vector as the original
centroid, written in the new coordinate system.)

Like the bisection center, the centroid can be defined without using any metric structure.
Another, more abstract, way to define xc is to assert that f(xc) is the average value of f(C),
for any linear functional f on Rn. A physical interpretation of this abstract definition is that
the planar shape C will balance perfectly when supported at the centroid xc. This physical
interpretation is also a natural motivation for thinking of the centroid as a center of C.

If C has a bisection center c, then either the physical interpretation or the evaluation of
Equation (3) makes it clear that the centroid occurs at c. Of course, the centroid exists for
an arbitrary compact convex set, while the bisection center does not. We will see later that
the quasi-center agrees with the centroid in some important cases, but that there are other
important cases in which the two differ.

2.3 The Quasi-Center of a Compact Convex Planar Set

The previous sections have described a compact, convex set C as a subset of a finite-
dimensional vector space V, and have introduced the centroid and bisection center as two
notions for a central point of C. Neither definition requires any Euclidean structure. This
section defines the quasi-center, which is another possible center for C, which also requires
no metric considerations. The quasi-center is similar to the bisection center, but relaxes the
conditions: rather than requiring that a point p exactly bisects every chord through p, the
quasi-center is the point p that comes as close as possible to bisecting every chord through
p. Following sections will show that the quasi-center is unique for planar sets (but not nec-
essarily unique for non-planar sets), and present a dynamic geometric algorithm for finding
it.

To define the quasi-center formally, let p be a point in the interior of C, and let ch be a
chord through p, that intersects the boundary of C in two points, b1 and b2. Then p will divide
S(b1, b2) into two vectors, v(b1, p) and v(p, b2). While no absolute length can be assigned to
either vector, length comparisons can still be made, because the vectors are parallel. Relabel
the boundary points if necessary so that v(b1, p) is shorter than (or the same length as)
v(p, b2). Then define the cut-ratio α(p, ch) for p and ch by

v(b1, p) = α(p, ch)v(b1, b2). (4)

The cut-ratio is the “length” of the shorter segment of the chord, divided by the “length” of
the total chord. For any particular p and ch, the cut-ratio is between 0 and 0.5. It equals
0.5 only when p bisects ch.
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Equation (4) describes only one chord through p. To see if p is a good candidate for the
center of C, we should consider its behavior on every chord through p. Therefore define a
minimum cut-ratio M(p) by

M(p) = min
ch

α(p, ch), (5)

where ch is any chord through p. M(p) can never be greater than 0.5, and equals 0.5 only
when p is the bisection center in the restricted sense defined earlier. M(p) gives the most
uneven division of a chord that p accomplishes. It is easy to see that M is a continuous
function on C.

We will define the quasi-center of C as the point in C at which M takes on a maximum
value µ. The existence of such a maximum follows because M is a continuous function on
a compact set. To speak of the quasi-center instead of a quasi-center requires a proof of
uniqueness, which following sections will supply for planar sets.

3 A Geometrical Construction for the Quasi-Center

The previous section defined the (or at least a) quasi-center for a compact, convex set C,
but gave no way to find it. This section presents a visually appealing geometric approach to
locating the quasi-center.

3.1 The Sliding Homothety Construction

A simple two-dimensional example, in which C is the triangle shown in Figure 2, will explain
the geometric algorithm. To begin with, let us find Pα, the set of all the points p ∈ C whose
minimum cut-ratio is at least α :

Pα = {p ∈ C|M(p) ≥ α}. (6)

For purposes of illustration, we will initially set α = 0.2, and then let α be arbitrary. Suppose
there is a particular chord ch, as shown in Figure 2, intersecting the boundary of C at b1
and b2. The point p divides ch into two segments, such that the segment from b1 to p is 0.2
times the “length” of the entire chord. Then it is clear that no point in the (open) segment
between b1 and p can be in P0.2, because the minimum cut-ratio µ of such a point is less
than 0.2 on the chord ch.

This argument applies to every chord, but for now let us apply it solely to the chords
that originate at b1, as shown in Figure 3. P0.2 cannot contain any point in the first twenty
percent of any chord through b1. Figure 3 shows in grey the segments that consist of the first
twenty percent of each chord through b1. Denote this grey set by C(b1, 0.2). As a whole, the
segments in C(b1, 0.2) form a copy of C, and the size of that copy is twenty percent of the
size of the original C. In technical language, C(b1, 0.2) is a homothety of C through the point
b1. The boundaries of C and C(b1, 0.2) overlap around b1. An important fact about C(b1, 0.2)
is that P0.2 must lie completely outside it, because any point in C(b1, 0.2) cuts some chord
in a ratio less than 0.2.
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b p = 0.2b b1 1 2

Figure 2: A Chord and Dividing Point with Cut-Ratio 0.2

This homothety construction can be applied not just at b1, but at any point b on the
boundary of C. The result in every case will be a shrunken version of C, at the point b. Even
when b is a vertex, C(b, 0.2) will itself contain a duplicate of that vertex, which fits perfectly
inside the vertex at b. The boundary at b might be a curve instead of a straight line. In that
case, C(b1, 0.2) will be tangent to C at b, and the curvature of the boundary of C(b1, 0.2) at b
will be greater than the curvature of C at b (assuming the curvature is defined). In all cases,
the homothetic copy will be contained completely within C.

We have seen that P0.2 lies completely outside C(b1, 0.2), and similar arguments show that
P0.2 lies completely outside C(b, 0.2), for any boundary point b. A dynamic interpretation of
the sets C(b, 0.2) allows us to combine all these exclusions. Start with C(A, 0.2), where A
is a vertex of the triangle, as shown on the left side of Figure 4. Slide C(A, 0.2) along the
side AB of the triangle, towards the vertex B. At any point of this motion, the translated
C(A, 0.2) will lie directly on top of C(b, 0.2), for some b on AB. Similarly, given any b on AB,
a translated copy of C(A, 0.2) will at some point overlie the homethety at b. Thus this sliding
motion covers every point in every homothety along AB, and no other points. Continue this
translation around the triangle, similarly sweeping out areas along sides BC and CA, ending
up at A where we began. Denote by S0.2 the total region that has been swept out; the right
side of the figure shows S0.2, shaded grey.

We can now show that P0.2 is the set given by C/S0.2. Since every homothetic copy consists
of points that cut at least one chord in a ratio less than 0.2„ it must be that no point in
S0.2 is in P0.2. Conversely, suppose that a point p is in P0.2. Then p cannot cut any chord in
a ratio less than 0.2. By its construction, however, S0.2 encompasses every point in C, that
cuts any chord in a ratio less than 0.2. Therefore p cannot be in S0.2. Since every point is
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Figure 3: The First 20 Percent of All Chords Originating at b1
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Figure 4: The Sliding Homothety Construction
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Figure 5: The Set P0.2

in either P0.2 or S0.2, but not both, it must be that P0.2 consists exactly of that part of C
that is outside S0.2. Figure 5 indicates P0.2 for the triangle in Figure 2. Note that we have
defined P0.2 so that it is a closed set, that contains its boundary

This sliding homothety construction allows us to draw further conclusions about P0.2, in
particular that it is a closed convex set. Since S0.2 was constructed by sliding homothetic
copies of C along the edges of the triangle C, it follows that each inner boundary of S0.2 is
a translation of an edge of the triangle. For example, the inner boundary A′B′ is a parallel
translation of the edge AB of the triangle. Since any point that is in C but outside S0.2 is in
P0.2, therefore an inner boundary of S0.2 is an outer boundary of P0.2, or is at least outside
P0.2. Suppose A′B′ were extended to infinity in either direction. This extension would create
a closed half-space that contains P0.2; the half-space is closed by definition, because it is
assumed to contain the extended A′B′. By creating such a closed half-space from B′C ′ and
C ′A′ as well, P0.2 could be written as the intersection of three closed half-spaces. Such an
intersection of half-spaces is always a convex set; furthermore, the intersection of a collection
of closed sets is again closed. It thus follows that P0.2 in this example is a closed convex set,
as was to be shown.

While the demonstration of the previous paragraph has implicitly used the fact that C is a
polygon, the extension to non-polygons is clear: simply approximate any boundary segment
that is not a straight line by a polygonal set of straight lines. A set of closed half-spaces can
then be found, whose intersection is a closed convex set that approximates P0.2. By using
progressively finer polygonal approximations to the boundary of C, one can find a sequence
of closed convex sets, which converge to P0.2, which is therefore itself closed and convex.

Although the example given is two-dimensional, extensions to higher dimensions are also
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clear. In three dimensions, one would use polyhedra, while in an arbitrary dimension, one
would use polytopes. Homothetic copies of a convex set at a boundary point are defined
in any dimension, as are cut-ratios, and there are no problems translating those copies over
the entire boundary. The foregoing constructions therefore apply in an arbitrary number of
dimensions.

The sliding homothety construction in Figure 5 is reminiscent of the spherical neighbor-
hood construction with radius −ε (see Sect. 14.9 of Ref. 1), in which the center of a ball
of radius ε is slid over the boundary of a convex set. Any area that the ball sweeps out is
then removed. While at a casual glance Figure 5 seems to be implementing such a construc-
tion, there is in fact a significant difference. Apart from the fact that we have no metric
structure with which to define balls of radius ε, the value of ε itself would be different for
different edges of the triangle, even if there were a metric structure. In the example, the
inner boundary corresponding to AB is traced out by the image of C under the homotheties.
The “distance” between AB and the corresponding inner boundary is twenty percent of the
“distance” from AB to C. Similarly, the “distance” between AC and its corresponding inner
boundary is twenty percent of the “distance” from AC to B. If this triangle were located in
standard Euclidean space, then the distance from AC to B would be an altitude, and the
radius ε for each side would be twenty percent of the altitude of the remaining vertex. In
general, of course, these εs would be different for each side, although constant over any one
side.

3.2 Converging on the Quasi-Center

The previous section showed how to construct the set Pα of points of C whose minimum cut-
ratio µ is α or greater. Recall that the quasi-center of C is the point of C at which µ attains
its maximum value. This section will show that, as α increases, the sets Pα form a nested
sequence of closed convex sets, that converge on a single point, which is the quasi-center.

From the definition of µ, it is clear that Pα1 ⊇ Pα2 whenever α1 ≤ α2. The geometry of
the construction makes this fact even clearer: as α increases, the region Sα swept out by the
sliding homotheties extends further inwards, away from the boundary of C, so the region left
for Pα decreases. When indexed by α, the sets Pα thus form a nested sequence, in which
each Pα is contained in all the Pαs before it.

Since α is a cut-ratio, it takes on a maximum value of 0.5, as does µ. If α were greater
than 0.5, then the sliding homethety construction would still be defined, but the set Pα
would be empty, because the inner boundaries of Sα would have crossed one another, so the
intersection of the resulting half-planes would be empty. As α increases from 0, in fact, Pα
will become empty when α = µ, and stay empty thereafter.

When the bisection center is defined, such as occurs for a circle of radius R, µ = 0.5, and
P0.5 is the one-point set consisting of the center. Geometrically, S0.5 in this case is the region
swept out when a circle of radius R/2 (a homothety of the original circle by a factor of 0.5)
is slid along the circumference of the circle, maintaining tangency at the point of contact
(see Figure 6). The only remaining point, that is not swept out, is the center of the circle.

While Pα is always empty for α > 0.5, it is also possible for Pα to be empty when α < 0.5.
As an example, Figure 7 shows Figure 5, when α is 0.4 instead of 0.2. The homothetic
copies, like C(A, 0.4), are twice the size of the homothetic copies, like C(A, 0.2), in Figure
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q

Figure 6: The Sliding Homothety Construction for a Circle when α = 0.5

5. The striped area in the center of the triangle will actually be covered three times, as the
homothetic copy slides along the three sides. The inner boundary A′B′ is twice as far from
AB in Figure 7 as it is in Figure 5, as are the inner boundaries corresponding to the other
two sides. The closed half-space corresponding to A′B′ is to the right of A′B′, and does not
intersect the other two half-spaces, so P0.4 is empty. Suppose p is any point in the triangle;
then an implication is that there will always be at least one chord ch through p, such that p
cuts ch in a ratio less than 0.4.

Since µ(p) is the minimum cut-ratio α over all chords through p, and since all ps whose
minimum cut-ratio is greater than α are in the set Pα, therefore µ(p) takes on a maximum
when Pα is as small as possible, which occurs at the smallest α for which Pα is empty. The
maximum value of µ is then that smallest α. These statements can be seen more clearly
geometrically. As α increases from 0, Sα will expand until it covers all of C. The infimum
of all the αs which makes Sα = C is the maximum value of the function µ. That infimum
occurs at the first α at which Pα has empty interior, and we will show that this Pα is a single
point, the quasi-center.

Algorithmically, the critical value of α can be determined by bisection; conceptually, it
is more natural to increase α steadily from 0 until Pα collapses to a single point. Figure 8
shows the results for the triangle in the original example. Since α = 0.2 is too small, and
α = 0.4 is too big, we will try an intermediate value of α = 1/3. The figure shows the 1/3
homothetic copies of the triangle in each of the vertices, and indicates with dotted lines the
inner boundaries of S1/3 corresponding to the triangle’s three edges. Since the set S1/3 is
open, it can be seen that every point of the triangle is covered, except the point marked q.
P1/3 is therefore the single point q. If α were less than 1/3, even by a slight amount, then
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Figure 7: The Sliding Homothety Construction when α = 0.4

Pα would include some small open neighborhood around q.
The conclusion is that the maximum µ for this triangle is 1/3: the closest we can come

to finding a point that bisects every chord through it is the point q, which cuts at least one
chord in the ratio 1/3. It can be seen that q does bisect some of its chords, but by no means
all of them. The cut-ratios for q’s chords vary from a maximum of 0.5 to a minimum of
1/3, and we cannot find any point with a higher minimum cut-ratio. Since q satisfies this
condition, we conclude that q is the quasi-center of the triangle.

3.3 Proof that the Quasi-Center is Unique

This section will prove that the compact convex planar set C has a unique quasi-center.
Uniqueness is equivalent to asserting that the set Pm is a single point. Assume, by way of
contradiction, that Pm is not a single point. Then, since Pm is a convex set, it must contain
a line segment L. Then L is also contained in every Pα, for α < µ. As α increases, and Sα
gradually covers Pα, L can only remain inside Pα as long as least one of the bounding edges
of Pα (such as the edges A′B′, B′C ′, and C ′A′ in the figure) is parallel to L; otherwise, each
edge, and therefore the boundary as a whole, will intersect L at some point, so that L is not
contained in some Pα. Each bounding edge of Pα, as shown earlier, is parallel to some edge
of C, so the boundary of C must contain a line segment L1 that is parallel to L, and whose
copy in Pα converges to L.

When α = m and the copy of L1 reaches L, the construction insures that there is at least
one chord ch, with an initial point b1 on L1, and an intermediate point p on L. The terminal
point b2 of ch is on the boundary of C, and can be found by extending S(b1, p) by a factor of
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Figure 8: The Sliding Homothety Construction when α = 1/3

1/m. In fact, since L is a line rather than a single point, there must be a continuous set of
such chords, all translations of ch in the direction given by L. There is therefore a continuous
set of b2s, in the direction given by L, tracing out a line segment L2 on the boundary of C.
We can loosely think of L2 as being on the “opposite side” of C from L1.

L1 and L2 are reversible, in the sense that we can think of those same chords as originating
on L2 and terminating on L1. L1 and L2 each produce a translated copy that is on the
boundary of Pm. The translated copy of L1 will be m of the way towards L2, and similarly
the translated copy of L2 will bem of the way towards L1. These two copies will be separated
as long as m < µ. In order for Pµ to have no interior, the copy of L2 in Pµ must reach L at
exactly the same time as the copy of L1 does. By the reversibility, however, the two copies
can only reach each other when m = 1/2. Since 1/2 is the maximum value that µ can obtain,
then µ for Cmust be 1/2, implying that C has a bisection center. Since a bisection center
is a unique point when it exists, the “line” L must in fact be a single point q, which is the
unique quasi-center.

This proof does not extend to higher dimensions. The reason is that the boundary
segments L1 and L2 are unique in two dimensions, but might not be unique in more dimen-
sions. A simple counter-example, which shows that the quasi-center is not unique in three
dimensions, is a triangular prism. In this case, the previous triangular constructions can be
adapted to show that the set P1/3 is the line segment consisting of the middle third of the
prism’s axis. Any point on this line segment is a quasi-center that maximizes the minimum
cut-ratio, so the quasi-centers are not unique. Many lines on the boundary of the prism
could serve as L1 or L2, and there is no reason to expect L1, L2, and P1/3 to fall in the same
plane, as they must in the two-dimensional case.
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4 Comparison with Previous Definitions

This section compares the newly-defined quasi-center with two previous definitions, the bisec-
tion center and the centroid. It will be shown that the quasi-center generalizes the bisection
center, which only exists for a limited number of convex sets. More importantly, it will be
shown that the quasi-center is distinct from the centroid, although the two agree in some
non-trivial cases. The differences between the two are slight in all the cases examined, but
some examples will show that they are not identical. Both definitions are independent of
metric structures. The centroid has the advantages, which the quasi-center lacks, of applying
also to non-convex sets, and being uniquely defined for a set of arbitrary dimension.

If the bisection center exists for a certain convex set C, then it can easily be seen that
the bisection center is also the quasi-center. This is a limiting case, because µ reaches its
maximum possible value of 0.5. Likewise, if µ is 0.5, then P0.5 is a single point whose cut-ratio
for every containing chord is 0.5, so P0.5 is in fact the bisection center. For most convex sets,
of course, the bisection center does not exist, while the quasi-center exists for any compact
convex planar set. Thus the quasi-center generalizes the bisection center to a much wider
variety of convex sets.

The relationship between the quasi-center and the centroid is more complicated. Figure
8 shows that the two points are sometimes the same, in a non-trivial case. Besides being the
quasi-center, the point q in that figure is also the centroid. This result follows from analysis
of the similar triangles in the figure. It can be seen that the line Bq, if extended, would
bisect the edge AC, so q is a median of the triangle. Similar arguments show that q is also
on the other two medians. Since the three medians of a triangle intersect at the centroid, q
must be the centroid. In this triangle, then, the quasi-center and centroid agree.

In fact, the metric-independence of the quasi-center and the centroid show that they
agree for any triangle. If a general planar shape is moved so that its centroid is at the origin,
then the average value of any linear functional over that shape is 0, and this definition
requires only vector space properties. Similarly, the quasi-center definition requires only
vector space properties, such as the ability to divide any line segment in a given ratio.
Both the quasi-center and the centroid are therefore preserved under linear transformations.
Suppose triangle ABC in Figure 8 were coordinatized so that A was at the origin of the
vector space R2. Then a suitable linear transformation could move the vectors AB and AC
to any two (linearly independent) vectors, thus defining any desired triangle. For any of these
triangles, the set P1/3 would be constructed by sliding a 1/3 homothety of the triangle around
its perimeter, and this set would always consist of a single point, which is simultaneously
the quasi-center and the centroid. The vector space axioms are sufficient to define both the
homothety and the sliding, so no metric notions are needed.

Since the centroid and quasi-center agree on all triangles, a natural conjecture is that the
quasi-center is just an elaborate redefinition of the centroid. The quarter-circle in Figure 9
shows that this conjecture is not true. We can calculate the quasi-center q for the quarter-
circle of radius 1. By symmetry, the quasi-center must be on the line AD. Some homothetic
copies of the quarter-circle are shown, of factor a. They are a times the quarter-circle of radius
1, so their radius is a. The homothetic copies are slid along the quarter-circle perimeter. If
a is chosen correctly, then they will sweep over all the interior except the single point q.
The figure shows that the length of AD is (1 +

√
2)a. Since AD is also a radius of the
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Figure 9: A Convex Shape for which the Quasi-Center and Centroid Differ

quarter-circle, its length is 1, so

(1 +
√

2)a = 1 (7)
a ' 0.4142. (8)

If a Cartesian coordinate system were applied to the quarter-circle, then the quasi-center
would occur at (0.4142, 0.4142). The centroid of the quarter-circle, however, is given by
(4/(3π), 4/(3π)), which is approximately equal to (0.4244, 0.4244). This example suffices to
show that the centroid and the quasi-center are not always the same point. Their difference,
though, in this case and in a few others that were looked at, is often not very great, and
might not be of much practical importance. Perhaps this result is not surprising, since both
definitions formalize the intuitive notion of a “center.”

While the quasi-center has an appealing intuitive construction, the centroid has some
advantages that the quasi-center lacks. First, the centroid has a natural physical interpreta-
tion: the centroid is the point at which a planar convex set (of uniform density) will balance.
In three dimensions, the same balancing quality appears, for example in mechanics, where
the motion of an irregular object can often be described solely with reference to its centroid.
The quasi-center does not (at least not yet) have any physical interpretation beyond its con-
struction. Second, the centroid definition applies equally well to non-convex sets. As long as
a set satisfies some very mild measurability conditions, and is bounded, its centroid can be
calculated; even some unbounded sets have centroids. The quasi-center, on the other hand,
relies heavily on convexity, using chords that span the entire set. Third, the centroid is a
unique point for a convex set of arbitrary dimension. While the quasi-center is unique for
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many higher-dimensional sets, uniqueness is only guaranteed for planar sets, and a triangular
prism provides a simple instance of non-uniqueness in three dimensions. In general, then,
the quasi-center is of more theoretical than practical interest, in comparison to the centroid.

5 Summary
This paper has introduced the quasi-center of a compact convex planar set. The quasi-center
can be constructed by a geometrically intuitive sliding homothety construction. For planar
sets, the quasi-center exists and is unique. In higher dimensions, at least one quasi-center
exists, but it is not necessarily unique. Intuitively, the quasi-center is centrally located within
a convex planar set, and generalizes the technical definition of a convex set’s center, which is
also an intuitive definition, but only exists for very symmetrical sets. The quasi-center agrees
with the centroid for many planar sets, such as triangles, but the example of a quarter-circle
shows that the the quasi-center and the centroid are not necessarily identical—although,
in many examples, they are very close. In comparison to the centroid, which exists and is
unique for a wide variety of sets, both convex and non-convex, in arbitrary dimensions, the
quasi-center is more of a theoretical curiosity than a practical tool.
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