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Abstract

Suppose that two different imaging devices produce two colour images of the same
physical object, or that one device images the same object under two different illumi-
nants. A metamer mismatch occurs when two colours are identical in one image, but
different in the other image. Each colour output in the first image could have been pro-
duced by a large set, called a metamer set, of reflectance spectra. In the second image,
the metamer set might produce a wide variety of colour outputs, referred to in their
entirety as a metamer mismatch body (MMB). This article presents a simple algorithm
for constructing an MMB, by expressing its vertex in an arbitrary direction as a solu-
tion to a linear programming program. The algorithm finds not only vertices, but also
the reflectance spectra that, when imaged by the second device, produce those vertices.
Geometric and algebraic structures behind the algorithm are defined and analyzed in
detail. While the linear programming approach to MMBs is not new, the current paper
aims to make it accessible, rigorous, and easy to use; to this end, there is an accompa-
nying open-source Octave/Matlab implementation, containing about 30 source lines of
code.

Index Terms: metamer, metamer mismatch body, metamer mismatch volume, sensor, illu-
minants, linear programming, colour

1 Introduction

The problem of metamer mismatching can occur when two different sensing devices image
the same object, or when one device images the same object twice, but under different
illuminants. Some important practical instances occur when the first “device” is a human
visual system, and the second device is a camera; the human observes a scene and then
takes a picture of it. There can be a mismatch between the human’s perceptions and the
colours in the picture, so some colour correction is necessary. In another instance, a camera
photographs the same object twice, outdoors, but at different times of day, under different
lighting conditions. The two photographs can produce different colours, making it difficult
to determine the object’s local colour. A geometric object called a metamer mismatch body??

(MMB) describes the extent of the mismatching in such cases. This paper provides a careful
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exposition, and open-source implementation, of a standard algorithm??-?? for constructing
MMBs.

An input for a sensing device, or indeed the human visual system, is a spectral power
distribution (SPD) over the visible spectrum, between 400 and 700 nm; as is typical, this
paper will discretize the visible spectrum into 31 wavelengths, 10 nm apart. The set of
outputs, or responses, that a device can produce is called its colour space. A device maps an
SPD into a point in the device’s own colour space. This article assumes, as is true of many
cameras and the human visual system, that the device’s colour space is a subset of the vector
space R3, and that the mapping is a linear transformation. Typically, a camera’s output
space is coordinatized by red-green-blue (RGB) coordinates, while human colour space uses
the XY Z coordinates introduced by the Commission Internationale de l’Éclairage (CIE) in
1931.??

An object’s local colour is given by a reflectance spectrum x(λ), which is a function,
taking on values between 0 and 100%, of the 31 typical wavelengths: x(λ) is the percentage of
incoming light of wavelength λ that the object reflects. Let χ denote the set of all reflectance
spectra. χ is a subset of the vector space R31 of real functions on the 31 wavelengths. The
device’s output for that object depends not only on the device and the object, but also on the
illuminant, because the SPD that reaches the device is the product of the object’s reflectance
spectrum and the illuminant’s SPD. Write the illuminant’s SPD as a function p(λ), which
gives a power level at each wavelength.

A device’s output is determined by three response curves (called colour-matching func-
tions when discussing human vision). Each response curve is a linear functional on the vector
space of SPDs. The device’s total response function can be written as a matrix R of three
rows and 31 columns, where each row gives the coefficients for one response curve. The
colour output for an object of spectrum x(λ) results from two steps. First, the illumina-
tion, of SPD p(λ), reflects off the object, of spectrum x(λ), producing a new SPD, given by
wavelength-wise multiplication: p(λ)x(λ). Second the SPD p(λ)x(λ) impinges on the sensing
device, which responds by producing a colour output R · (p(λ)x(λ)), where · indicates matrix
multiplication, and p(λ)x(λ) is written as a vertical vector of 31 components, one for each
wavelength. Combine R and p(λ) into one colour signal map, given by a matrix

Φij = Rijp(λj), (1)

where j indexes the 31 wavelengths. Then Φ is a linear transformation from the 31-
dimensional vector space of reflectance spectra to the 3-dimensional device colour space.

In metamer mismatching, two colour signal maps, Φ and Ψ, and one spectrum, x, produce
two colour outputs,

z = Φ(x) and (2)

w = Ψ(x), (3)

in two colour spaces. Ideally, some function between these spaces would uniquely associate
z and w, without requiring any knowledge of x. If we started with the colour output z for
an object when imaged by the first device, this function would predict the colour output w
for that object when imaged by the second device. In most practical cases, however, there
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is no such function. Instead, many colours w0 in the second colour space are consistent with
z, in that there exists some reflectance spectrum x0 for which

z = Φ(x0) and (4)

w0 = Ψ(x0). (5)

The spectrum x0 is likely different from the original x, but Equations (??) and (??) imply
that

Φ(x0) = Φ(x). (6)

The set of all colours w0 in the second space, for which an x0 can be found that sat-
isfies Equations (??) and (??) is called a metamer mismatch body (MMB), and denoted
M(z; Φ,Ψ).M(z; Φ,Ψ) is a subset of the colour space of Ψ. The bigger M(z; Φ,Ψ) is, the
more dissimilar, loosely speaking, Φ and Ψ are; the smaller the mismatch body, the more
similar they are. In the limit, the mismatch body is a single point for each z, Φ and Ψ
contain identical information, and there exists an invertible linear transformation between
their colour spaces.

To find the metamer mismatch body, begin with the metamer set of z under Φ, which is
the set of all the reflectance spectra that Φ sends to z. It is given formally by

Φ−1(z) ∩ χ, (7)

where

Φ−1(z) =
{
x ∈ R31|Φ(x) = z

}
(8)

is the pre-image of z. The intersection with χ restricts the pre-image to physically possible
reflectance spectra—those whose values are all between 0 and 1. Any element of the metamer
set could serve as x0 in Equations (??) and (??), so the metamer mismatch body, which is
the set of all possible w0’s in Equation (??), is given by

M(z; Φ,Ψ) = Ψ
(
Φ−1(z) ∩ χ

)
. (9)

While Equation (??) is straightforward, actually calculating MMBs for practical pur-
poses is surprisingly difficult. Section 3.8.5 of Ref. ?? outlines various algorithms, some
using numerical or statistical approximations, and others using linear programming (LP). In
2014, Logvinenko, Funt, and Godau?? (LFG) presented a non-approximate algorithm that
did not use linear programming. The current paper presents an explicit, detailed derivation
of a previously known LP-based algorithm, along with an open-source Octave/Matlab im-
plementation. The implementation consists of a single routine, containing about 30 source
lines of codes, and is ready for immediate use.

In the algorithm in this paper, each direction in the second device’s colour space produces
a pair of linear programming problems whose solutions are two vertices of M. At those
vertices, M just touches two parallel supporting planes that are “normal” to the given
direction. By stepping through a finely spaced set of directions, the metamer mismatch
body can be accurately constructed.
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The linear programming formulation depends on the fact that Φ−1(z) ∩ χ and M are
convex polytopes. The metamer set Φ−1(z)∩ χ is the the intersection of the affine subspace
Φ−1(z) and the unit cube χ, both of which are convex subsets of R31. Φ−1(z)∩χ is a polytope,
so the intersection is therefore a convex polytope. M is the linear image under Ψ of the
convex polytope Φ−1(z) ∩ χ, and so is itself a convex polytope.

Linear programming optimizes a linear functional over a convex polytope. The linear
functional F in this case is the “distance” in a given direction, in the second colour space.
F can be be pulled back from a functional on R3 to a functional Ψ∗F on R31:

(Ψ∗F )(x) = F (Ψ(x)). (10)

As a linear functional on R31, Ψ∗F is also defined over the polytope Φ−1(z)∩χ. If a reflectance
spectrum x minimizes or maximizes Ψ∗F over Φ−1(z) ∩ χ, then, as the paper will show, the
vertex Ψ(x) minimizes or maximizes F over M(z; Φ,Ψ). Thus we find not only vertices
of M, but also the spectra that produce those vertices. The geometrical theory of linear
programming will show that each such spectrum has value 0 or 1 for at least 28 of the 31
wavelengths; at most three of spectrum values are strictly between 0 and 1.

The paper is organized as follows. After the introduction, the geometric structure of
metamer sets and metamer mismatch bodies is derived in detail, leading to a simple algorithm
for the construction of MMBs. The algorithm is then summarized in pseudo-code, and an
Octave/Matlab implementation, consisting of a single routine with about 30 source lines of
code, is presented. An example is given, involving Illuminants A and D65, and the human
visual system. The algorithm is then discussed in the context of other algorithms. Finally,
a summary of the paper is given.

2 An Algorithm for Metamer Mismatch Bodies

2.1 Metamer Mismatching

Metamer mismatching is an important practical concern, that appears in multiple settings.
For one example, most cameras mimic the colour performance of the human visual system:
ideally, each RGB output of a camera corresponds to exactly one CIE XY Z tristimulus
vector, and vice versa. In such a situation, a linear transformation could automatically con-
vert a digital image into human perceptual space. In practice, response differences between
human cones and artificial photoreceptors, as well as uncertainty about the illumination for
the images, prevent a simple correspondence. Instead, a particular RGB output could re-
sult from many different reflectance spectra. The set of XY Z colours those spectra would
produce, if viewed by a human, form a metamer mismatch body.

Another instance of metamer mismatching occurs when a camera images an object under
one illuminant, producing a certain RGB, and one would like to “correct” the image so that
the object appears as it would under a different illuminant. This problem is not well-defined,
however, because, even if the first illumination is known, many different reflectance spec-
tra could have produced that RGB—and those reflectance spectra would produce different
colours under the second illuminant. The set of all such possible colours is another instance
of a metamer mismatch body.
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In its most general setting, a metamer mismatching involves

1. Two sensing devices (one or both of which could be a human visual system),

2. Two illuminants, and

3. One colour output of the first sensing device.

The sensing devices are assumed to be linear and three-dimensional. Mathematically, a
device’s colour output, also called a response, is a vector in R3, such as familiar RGB or
XY Z coordinates, and that vector is a linear transformation of a stimulus SPD that impinges
on the device. Ordinary function addition and scalar multiplication naturally make the set of
SPDs into a vector space. To avoid degeneracy, both illuminants are assumed to be positive
everywhere on the visible spectrum; most natural illuminants satisfy this assumption. One
further restriction is made: the colour output results from imaging an object, rather than
from imaging a light source. The object reflects incoming light in accordance with some
reflectance spectrum, which, however, is assumed not to be known.

Suppose, then, that the first device produces a known colour output z, under a known
illuminant, when imaging a physical object. Now suppose that a second device images
that object, under a second illuminant. A second colour output will be produced, which
will depend on the device’s response function, the illuminant, and the object’s reflectance
spectrum. While the first two of these factors are known, the reflectance spectrum is not
known—in fact, all we know is that it produces the response z when imaged by the first
device under the first illuminant. Many reflectance spectra satisfy this condition, and could
produce many different responses in the second image. This set of responses, which is a
subset of the second device’s colour space, is a metamer mismatch body, for which the
following sections will outline a simple, rigorous construction.

2.2 Algebraic Setting

A physical object will be supposed to have a reflectance spectrum x(λ), where λ is a wave-
length in the visible spectrum. For colour science applications, it is sufficient if λ takes on
the 31 wavelengths between 400 and 700 nm, at increments of 10 nm; this paper will follow
that practice. The value of x at λ gives the fraction of incoming light at wavelength λ that
the object reflects. On physical grounds, each value of x(λ) must be between 0 and 1.

An image is produced when some light reflects off the object and enters a sensing device.
The output image depends on both the spectral power distribution p(λ) of the illumination
and the response characteristics of the device. p(λ) is modeled as a strictly positive function
over the 31 wavelengths; each value is the power level of the illumination at a particular
wavelength. The stimulus that the camera responds to is also a spectral power distribution,
denoted by σ(λ) and given by element-wise multiplication:

σ(λ) = p(λ)x(λ). (11)

The output of a particular pixel of the image will be assumed to be a vector of three
coordinates, or channels; human vision and most digital cameras satisfy this assumption.
The output zi of the ith channel is given by a linear response curve Ri(λ). The coefficient Rij

is the value of Ri at the jth wavelength. Using the standard 31 wavelengths for λ, a device’s
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output function can be written as a matrix R of 3 rows and 31 columns, populated by the
coefficients Rij. If a stimulus σ(λ) is written as a vertical vector with 31 entries, then the
three-channel output z of the sensor is given by

z =

 z1
z2
z3

 =

 R1,1 R1,2 . . . R1,31

R2,1 R2,2 . . . R2,31

R3,1 R3,2 . . . R3,31



σ(λ1)
σ(λ2)
σ(λ3)
. . .

σ(λ31)

 . (12)

The entries z1, z2, and z3 are commonly denoted X, Y, and Z when referring to human vision,
and R, G, and B when referring to a camera. For the human visual system, the response
curves Ri(λ) are the familiar CIE colour-matching functions x̄(λ), ȳ(λ), and z̄(λ).

Equations (??) and (??) allow imaging functions to be expressed as linear transformations
between appropriate vector spaces. The first vector space of interest is R31, which models
both stimuli and reflectance spectra. An arbitrary physical stimulus σ can be seen as a non-
negative function on the standard 31 wavelengths, and thus as a vector in R31. A reflectance
spectrum can be seen as a function of the standard wavelengths, all of whose values are
between 0 and 1. Geometrically, the set χ of reflectance spectra is the solid unit cube in R31.
χ is easily seen to be a convex polytope. The second vector space of interest is R3, where the
output vector z lives, and which is the colour space for a particular device. Mathematically,
a device’s colour space can contain any vector in R3, but in practice colour spaces are limited
to a small subset.

The matrix in Equation (??) is a linear transformation from R31 to R3, that expresses how
a sensing device converts an input stimulus into an output colour signal. A more important
transformation, Φ : R31 → R3, called a colour signal map, can be constructed by substituting
Equation (??) into Equation (??) and manipulating some terms:

z =

 R1,1 R1,2 . . . R1,31

R2,1 R2,2 . . . R2,31

R3,1 R3,2 . . . R3,31




p(λ1)x1
p(λ2)x2
p(λ3)x3
. . .

p(λ31)x31

 (13)

=

 R1,1p(λ1) R1,2p(λ2) . . . R1,31p(λ31)
R2,1p(λ1) R2,2p(λ2) . . . R2,31p(λ31)
R3,1p(λ1) R3,2p(λ2) . . . R3,31p(λ31)



x1
x2
x3
. . .
x31

 (14)

= Φ(x). (15)

Though physically restricted to the set χ of reflectance spectra, mathematically Φ is defined
on all of R31. The mathematical interpretation will be used later, and the physical restriction
will be rewritten as a set of constraints. The transformation Φ describes how a sensing device
maps an object colour with reflectance spectrum x(λ) to a colour signal, and accounts for
both the sensing device’s response function and the illumination.
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2.3 Metamerism and Metamer Mismatching

Using images to extract information about an object’s local colour, which depends only on
the object’s reflectance spectrum, is an important practical problem, which is surprisingly
challenging because one object, when viewed under differing illumination, can produce stim-
uli with significantly different SPDs. The differing response functions of various sensing
devices lead to further complications. The main problem is metamerism, whose meaning
varies somewhat with context. In this paper, two different reflectance spectra are said to
be metameric, or metamers, if they produce the same colour signal z under a colour signal
map Φ. Algebraically, a colour signal z in R3, could result from any reflectance spectrum in
Φ−1(z), where the exponent −1 indicates the pre-image of z:

Φ−1(z) = {x|Φ(x) = z} . (16)

This pre-image is called the metamer set of z, relative to Φ.
The pre-image of a vector under a linear transformation is an affine subspace, which

is always closed and convex, of the domain vector space. The definition in Equation (??)
would allow vectors with negative components, or components greater than 1, but reflectance
spectra only take on values between 0 and 1, so on physical grounds Φ−1(z) will be restricted
to its intersection with χ. The set

Φ−1(z) ∩ χ (17)

is the intersection of two convex sets and is therefore convex. Both sets are also closed, so
their intersection is closed. In addition, since χ is compact, its closed subset Φ−1(z) ∩ χ is
therefore also compact.

Now suppose that a second colour signal map, Ψ, which differs from Φ in illuminant or
response function (or both), has a second metamer set,

Ψ−1(w) = {x|Ψ(x) = w} , (18)

relative to Ψ. (The w in Equation (??) lives in the colour space of the second device, not the
first.) Likely these two metamer sets will be different. Metamer mismatching results when
two reflectance spectra x and y are metameric under Φ, i.e. they give the same colour signal
under Φ, but give different colour signals under Ψ :

Φ(x) = Φ(y), (19)

Ψ(x) 6= Ψ(y). (20)

Some special cases of metamer mismatching are illuminant-induced metamer mismatching,
when Φ and Ψ arise from the same sensor but different illuminants, and observer-induced
metamer mismatching, when Φ and Ψ arise from different sensors but the same illuminant.
Mismatching also occurs when both sensors and both illuminants are different, although this
case has no common name. The mathematical development in this paper handles all those
cases.

To visualize geometrically the extent of metamer mismatching, which varies with colour,
define the metamer mismatch body of a colour signal z under two imaging transformations
Φ and Ψ by

M(z; Φ,Ψ) = Ψ(Φ−1(z) ∩ χ). (21)
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An MMB can also be associated with a reflectance spectrum x :

M(x; Φ,Ψ) = Ψ(Φ−1(Φ(x)) ∩ χ). (22)

If the spectrum x produces the colour signal z under Φ, then Equations (??) and (??) give
the same set. Any metamer mismatch body is a subset of the second device’s colour space,
and so is also a subset of R3. Since Φ−1(z) ∩ χ was shown to be compact and convex, it
follows that M(x; Φ,Ψ), which is a linear image of Φ−1(z) ∩ χ, is also compact and convex.

2.4 Constraints for a Metamer Set

Expression (??) writes the pre-image of a colour signal as the intersection of an affine sub-
space in R31 with the set χ of reflectance spectra, and the accompanying discussion shows
that Φ−1(z) ∩ χ is compact and convex. This section shows in addition that Φ−1(z) ∩ χ is
a polytope, and can be expressed as a finite intersection of closed half-spaces. Writing each
closed half-space as a linear constraint will allow a linear programming formulation for a
metamer mismatch body.

Let the set of xi’s, where each xi is the value of a reflectance spectrum at the ith wave-
length, be a basis for R31. A reflectance spectrum is always between 0 and 1, so

0 ≤ xi ≤ 1, (23)

for i = 1, 2, . . . , 31. Linear programming assumes implicitly that all variables are non-
negative, so just write

xi ≤ 1. (24)

These 31 inequality constraints define the set χ of reflectance spectra.
A standard technique in linear programming is slack variables, which convert inequalities

into equalities. Like ordinary variables, slack variables are required to be non-negative. For
each i, introduce the slack variable xi+31 by defining

xi + xi+31 = 1. (25)

Then any reflectance spectrum in χ can be written with 62 variables that satisfy the 31
linear equality constraints in Equation (??).

The pre-image Φ−1(z) can similarly be defined by a set of linear equalities. Writing
z = (z1, z2, z3), the condition z = Φ(x) can be written as three equations, one for each row
of Φ :

31∑
i=1

Φijxi = zj, (26)

where j = 1, 2, 3.
Any reflectance spectrum in Φ−1(z) ∩ χ must satisfy both the 31 linear constraints in

Equation (??) and the three linear constraints in Equation (??). Conversely, any spec-
trum which satisfies those 34 constraints must be in Φ−1(z) ∩ χ. All the constraints can be
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summarized in matrix form:

[
Φ 03×31

I31 I31

]



x1
x2
x3
. . .
x30
x31
x32
. . .
x61
x62


=



z1
z2
z3
1
1
. . .
1


. (27)

Denote the 34-by-62 matrix on the left by A, and the 34-element vector on the right by b.
Refer to the 62-element column vector on the left as x. Then Equation (??) can be written
more succinctly as

Ax = b. (28)

A reflectance spectrum x(λ) belongs to Φ−1(z)∩ χ if and only if its 31 xis, and the 31 slack
xi’s (given by xi+31 = 1−xi, for i = 1, 2, . . . , 31) satisfy Equation (??). This constraint form
for Φ−1(z) ∩ χ will be used later in a linear programming formulation.

2.5 The Vertices of a Metamer Set

Since the metamer set Φ−1(z)∩χ can be written as a finite intersection of closed half-spaces
(taken from the constraints of the previous section), it must be a convex polytope, and
therefore the convex hull of a finite set of extreme points, known more familiarly as vertices.
An extreme point of a convex body is not contained in the (relative) interior of any line
segment contained in the body. Roughly speaking, extreme points are the “corners” of the
body. This section will apply the geometric theory of linear programming to Equation (??)
to find the form of the extreme points of Φ−1(z) ∩ χ.

The canonical linear programming problem?? is to maximize a linear functional of the
vector x subject to the constraints

Ax = b, (29)

x ≥ 0, (30)

where A has m rows and s columns. (See, for example, Equations (2) and (3) in Section 1.5
of Ref. ??.) Any vector x that satisfies (??) and (??) is called feasible. It can be shown that
any linear functional on the polytope defined by (??) and (??) attains its maximum at some
extreme point of the polytope, so it is helpful to characterize the extreme points. Theorems
1.8 through 1.11 of the aforementioned reference show that a point is an extreme point if
and only if it is a basic solution to ?? and ??, where a basic solution is one for which at least
s −m variables (where s and m are the dimensions of the matrix A) are 0. In the current
case, A has 34 rows and 62 columns, so x is a vertex if and only if at least 28 of its entries
are 0.
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The first 31 entries of x are reflectance values for particular wavelengths, while the last
31 are slack variables, each of which pairs with a reflectance value to sum to 1. Since xi
and xi+31 (for i ≤ 31) must sum to 1, no xi and xi+31 can both be 0. Furthermore, if one
of them is 0, then the other one must be 1. If neither of the pair is 0, then they must both
be strictly between 0 and 1. To satisfy all these conditions, at least 28 of the 31 reflectance
values are either 0 or 1; the remaining three can be (but do not have to be) strictly between
0 and 1. These conditions are necessary and sufficient: a reflectance spectrum is a vertex of
the metamer set Φ−1(z) ∩ χ if and only if it satisfies Equations (??) and (??), and at least
28 of its 31 reflectance values are either 0 or 1.

As simple as this criterion is, the high dimension of χ makes calculating all the vertices
computationally prohibitive—a total of 228

(
31
3

)
, or 1.2 trillion, linear systems?? would have

to be solved to check for all possible vertices. (By restricting reflectance spectra to convex
combinations of a small set of fairly smooth spectra, which is sufficient for many practical
purposes, Finalyson and Morovic?? obtain a simpler metamer set, where solving for all
vertices is feasible. This paper, however, considers the more general case.) Fortunately,
M(z; Φ,Ψ) can be found without finding all the metamer set’s vertices. The next section
will use an LP algorithm to quickly find a few extreme points of Φ−1(z) ∩ χ, but only ones
which Ψ maps to extreme points of M(z,Φ,Ψ).

2.6 The Vertices of a Metamer Mismatch Body

While Φ−1(z)∩χ is a polytope in R31, the metamer mismatch bodyM(z; Φ,Ψ) is a polytope
in R3, a space of much lower dimension. Like a metamer set, a metamer mismatch body
is also a convex polytope, because M(z; Φ,Ψ) is the linear image under Ψ of the convex
polytope Φ−1(z) ∩ χ. Furthermore, every vertex of M(z; Φ,Ψ) must be the image of some
vertex of Φ−1(z) ∩ χ—but not vice versa: Ψ will map many vertices of Φ−1(z) ∩ χ into the
interior of M(z; Φ,Ψ). If enough vertices of M(z; Φ,Ψ) can be identified, then M(z; Φ,Ψ)
can be well approximated as the convex hull of those vertices; since M(z; Φ,Ψ) lives in R3,
the number of vertices needed is not prohibitive. This section will calculate vertices of a
metamer mismatch body, for a given direction, by formulating and solving a pair of LP
problems on the associated metamer set.

In R3, a direction can be formalized using a space-filling stack of parallel planes, each
of which is “normal,” in some appropriate inner product, to the vectors in that direction.
Alternatively, the planes can be seen as surfaces of constant value for some linear functional
F : R3 → R, given by

F (X, Y, Z) = αXX + αY Y + αZZ, (31)

where X, Y, and Z are a basis for R3. Each plane can be written

αXX + αY Y + αZZ = α, (32)

for some α. The coefficients (αX , αY , αZ) can be thought of as a direction vector in XY Z-
space.

Any compact convex body such as M(z; Φ,Ψ) will be intersected by some of the planes
resulting from F, and not intersected by others. Since the planes given by Equation (??)
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fill R3, there will be two supporting planes,?? which touch the body only on its boundary,
without intersecting the interior. The α’s for the supporting planes will be the minimum
and maximum values of F over the convex body. When the body is a convex polytope, at
least one of its vertices intersects the minimum plane, and at least one vertex intersects the
maximum plane; in the generic case, there is just one minimum and maximum vertex.

The functional F on R3 can be pulled back to a functional Ψ∗F on R31 by Ψ :

(Ψ∗F )(x) = F (Ψ(x)). (33)

The pullback Ψ∗F is a composition of two linear functions, so is itself a linear functional on
R31. In matrix notation,

(Ψ∗F ) = F (Ψ) (34)

=
[
α1 α2 α3

]  Ψ1,1 Ψ1,2 . . . Ψ1,31

Ψ2,1 Ψ2,2 . . . Ψ2,31

Ψ3,1 Ψ3,2 . . . Ψ3,31

 (35)

=
[ ∑3

i=1 αiΨi,1

∑3
i=1 αiΨi,2 . . .

∑3
i=1 αiΨi,3

]
. (36)

The pullback is useful because the maximum value of Ψ∗F on Φ−1(z) ∩ χ is also the
maximum value of F on Ψ (Φ−1(z) ∩ χ) . Furthermore, suppose the maximum value of F
on Ψ (Φ−1(z) ∩ χ) occurs at some point w0. We will prove by way of contradiction that
the maximum value of Ψ∗F on Φ−1(z) ∩ χ occurs somewhere on Ψ−1(w0). Suppose not,
i.e. suppose that Ψ∗F achieves its maximum on Φ−1(z) ∩ χ at some point y0, such that
Ψ(y0) 6= w0. Since y0 is a maximum, it must be that

F (Ψ(y0)) > F (Ψ(x0)), (37)

for every x0 in Φ−1(z) ∩ χ, and in particular for any x0 such that Ψ(x0) = w0. Such an x0
always exists, so

F (Ψ(y0)) > F (w0). (38)

Both w0 and Ψ(y0) are inM(z; Φ,Ψ), however, so the value of F at Ψ(y0) exceeds the value
of F at w0, contradicting the fact that F attains a maximum on M(z; Φ,Ψ) at w0. Since
Ψ∗F attains its maximum on Φ−1(z)∩χ at y0, and since any y0 in the pre-image of w0 would
give the same value of F as z0, it must be that

F (Ψ(y0)) = F (w0), (39)

as was to be shown.
Note that Equation (??) does not necessarily imply that Ψ(y0) = w0. In fact, many points

of M(z; Φ,Ψ) could give the same value of F as w0, if an edge or face of M(z; Φ,Ψ) were
flush with a level set of F. Then any y0 that Ψ maps to that edge or face will provide a
maximum for Ψ∗F. In the generic case, the maximum of F occurs at a single vertex w0 of
M(z; Φ,Ψ), so Ψ(y0) is a vertex. In fact, the theory of linear programming?? proves that
at least one vertex of a convex polytope must maximize a linear functional F. Even when
Ψ(y0) is not a vertex, however, it must still be on the boundary of M.
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To find vertices of M(z; Φ,Ψ), then, choose a direction (αX , αY , αZ), which defines a
functional F, and find a point y0 in Φ−1(z) ∩ χ, that maximizes Ψ∗F. The point Ψ(y0) is
then a vertex, or at least a boundary point, of M(z; Φ,Ψ).

Since the metamer set Φ−1(z) ∩ χ can be expressed as the set of solutions to Equations
(??) and (??), maximizing or minimizing Ψ∗F on Φ−1(z) ∩ χ is a standard LP problem:

Maximize (or minimize) (Ψ∗F )x, subject to (40)

Ax = b, (41)

x ≥ 0. (42)

Equation (??) gives A and b, Equation(??) gives Ψ∗F, and any LP package can be used
to solve (??) through (??). For this paper, the open-source Octave/Matlab routine glpk.m
was used. In fact, glpk.m can incorporate the box form of the constraints for χ directly,
allowing the user to input minimum values of 0 and maximum values of 1 for all the xi
rather than using slack variables. Once slack variables are eliminated, the matrix A reduces
to the matrix Φ, and the vector b reduces to [z1, z2, z3]

T . The call

x = glpk(Ψ∗F ,Φ,[z1, z2, z3]
T ,031×1,131×1) (43)

then produces a reflectance spectrum x that minimizes Ψ∗F, and Ψ(x) is a vertex of the
metamer mismatch body. Ψ∗F can be maximized by minimizing −Ψ∗F. The minimum and
maximum vertices are on opposite sides of M, and a pair of parallel supporting planes can
be drawn through them.

2.7 Constructing a Metamer Mismatch Body

Any convex polytope such as a metamer mismatch body can be expressed as the convex hull
of its vertices; the open-source Octave/Matlab routine convhulln.m makes the calculation
quick and easy. The previous section showed how to find two vertices for M(z,Φ,Ψ), in a
given direction. By choosing a fine enough set of directions, we can generate a set of vertices
whose convex hull approximates the metamer mismatch body as closely as desired. This
section gives details of such a construction for M.

Directions in R3 can be parametrized by spherical coordinates, which involve a distance
r, an azimuth angle θ, and an elevation angle φ :

αX = r cos θ sinφ, (44)

αY = r sin θ sinφ, (45)

αZ = r cosφ, (46)

where θ goes from 0◦ to 360◦, and φ goes from 0◦ degrees (along the positive Z-axis) to 90◦

(in the X-Y -plane). Typically, φ extends from 0◦ to 180◦, but since two opposite vectors have
the same direction for our purposes, it is sufficient to extend φ to 90◦. Similarly, changing r
does not change the direction, so r will be set to 1. With these simplifications, two angles φ
and θ define a direction.
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To find a set of directions in R3 that are finely and evenly spaced, define the angle
increment

∆i = 45◦/(2i), (47)

as a function of i, and choose θs between 0◦ and 360◦, and φs between 0◦ and 90◦, in
increments of ∆i. Each pair in the cross-product of the θs and the φs defines a direction,
whose coefficients as a functional F can be found by substitution into Equations (??) through
(??). When i is 5, the angles are spaced at just over a degree apart, which seems to define the
metamer mismatch body in adequate though not excessive detail. For finer approximations,
of course, larger values of i can be used.

For each pair of angles, solve the LP problem in Equation (??), finding the minimum
and maximum vertices of M(z; Φ,Ψ) for the direction defined by those angles. The result
will be a large collection of vertices. Some vertices will appear multiple times, because there
are multiple supporting planes through them; for instance, many supporting planes can be
drawn through a corner of a cube. Other times, the same vertex will appear twice, but with
very slightly different coordinates, due to numerics. Use the open-source Octave/Matlab
routine convhull.m to handle both these conditions. Given any set of points in Rn, this
routine finds the vertices of the convex hull of those points, as well as finding the faces of
dimension n − 1 on the boundary of the convex hull. In R3, convhulln.m returns a subset
of the input vertices, and a set of triangles, each of whose corners is an input vertex. The
triangles define the boundary of M(z; Φ,Ψ), and can be used in plotting routines or for
further analysis.

The interior of the boundary returned by convhulln.m approximates M(z; Φ,Ψ) from
below, because the returned vertices are a subset of all the body’s vertices. The interior is
therefore a subset of M(z; Φ,Ψ). A superset of M can be found by using the supporting
planes rather than the vertices. Each supporting plane defines a half-space which contains
M, and any convex body is the intersection of all the half-spaces that contain it.?? A crude,
but still informative, superset can be formed from the minimum and maximum planes normal
to the X-, Y -, and Z-directions. These planes form a rectangular box that enclosesM, and
M touches each of the box’s six sides. Fig. 6 of Ref. ?? is an earlier example of such a box;
the current paper extends that approach by finding further minimum and maximum planes
in other directions, and thus further refining the approximation. As i increases, the subset
and the superset both converge to the MMB, with the superset always containing the subset.

2.8 A Pseudo-Code Summary of the Algorithm

1. The algorithm’s inputs are

(a) A set of three response curves for a (first) sensing device,

(b) An SPD for the illuminant under which that device makes an image,

(c) A set of three response curves for a second sensing device (which might be identical
to the first sensing device),

(d) An SPD for the illuminant under which the second device makes an image, and

(e) A three-dimensional vector z, in the colour space of the first device.
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2. Calculate the colour signal map Φ (resp. Ψ), which is the composition of the illumination
of an object, followed by the first (resp. second) sensor’s response. If response functions
and illuminants are tabulated at the 31 10-nm intervals between 400 and 700, then Φ and
Ψ are both linear transformations from R31 to R3.

3. Find constraints for the metamer set Φ−1(z) ∩ χ, where

(a) Φ−1(z) = {x ∈ R31|Φ(x) = z} is the mathematical pre-image of z under Φ, and

(b) χ = {x ∈ R31|0 ≤ xi ≤ 1, for i = 1, 2, . . . 31} is the subset of R31 consisting of all
vectors with components between 0 and 100%. Physically, χ represents the set of
reflectance spectra, and Φ−1(z) ∩ χ is the metamer set of z.

The conditions

Φ(x) = z (48)

and

0 ≤ xi ≤ 1, for i = 1, 2, . . . 31 (49)

together provide a set of constraints that define the metamer set Φ−1(z) ∩ χ.
4. Choose a fineness level i (i = 5 or 6 is usually adequate), which gives a corresponding

angle increment 45◦/(2i). Construct a set of azimuth angles θ, from 0 to 360◦, and a set
of elevation angles φ, from 0 to 90◦, at that increment. For each pair (θ, φ), calculate

αX = cos θ sinφ, (50)

αY = sin θ sinφ, (51)

αZ = cosφ, (52)

and interpret them as the components of a direction vector in the colour space of the
second device.

5. For each direction vector in Step ??,

(a) Construct the corresponding linear functional F on R3, given by

F (X, Y, Z) = αXX + αY Y + αZZ. (53)

(b) Construct the pullback Ψ∗F, which is a linear functional on R31. Ψ∗F has 31 com-
ponents, the ith of which is

(Ψ∗F )i = αXΨ1i + αY Ψ2i + αZΨ3i. (54)

(c) Find a reflectance spectrum xmin ∈ χ which minimizes Ψ∗F over the set Φ−1(z)∩χ.
Formally, this minimization is a standard linear programming problem: minimize
the functional Ψ∗F on R31, subject to the constraints in (??) and (??). In Octave
or Matlab, the call

xmin = glpk(Ψ∗FY ,Φ,z,031×1,131×1) (55)

performs this minimization.

c© 2016 Paul Centore 14



AN OPEN-SOURCE ALGORITHM FOR METAMER MISMATCH BODIES

(d) Similarly, maximize Ψ∗F by minimizing −Ψ∗F with the Octave call

xmax = glpk(−Ψ∗FY ,Φ,z,031×1,131×1). (56)

(e) Ψ(xmin) and Ψ(xmax) are both vertices of M(z,Φ,Ψ). Maintain these vertices in a
running list.

6. The convex hull of all the vertices is an approximation (from below) to M(z,Φ,Ψ).

3 Implementation

DrawMetamerMismatchBody.m, an Octave/Matlab implementation of the algorithm just
presented, is freely available as an open-source download. The implementation is a single
short routine, totaling, apart from input checking and display commands, just under 30
source lines of code. Other researchers are welcome to use and improve this implementation,
provided that they make any of their modifications publicly available.

The implementation was investigated with the following example. Suppose the first
sensing device was the CIE 1931 Standard Observer, who was viewing an object of a light
grey colour, under Illuminant A. Then the response matrix R has 31 columns, and its three
rows are the CIE colour-matching functions x̄(λ), ȳ(λ), and z̄(λ). Denote the power levels
for A by pA(λ); scale A so that the the luminance (Y ) of ideal white is 100. Then the colour
signal matrix Φ for human vision under A is constructed by multiplying each entry of R by
the power level of A for that entry:

Φij = RijpA(λj). (57)

Now suppose that the same object is viewed under Illuminant D65, given by pD65(λ), and
scaled similarly to A. The second sensing device is again the human eye, so the response
matrix R is identical. Like Equation (??), the colour signal matrix Ψ is given by

Ψij = RijpD65(λj). (58)

It will be supposed the the object’s light grey colour is produced by a flat reflectance spectrum
which reflects 50% of the incoming light at any wavelength. Then the coordinates of the
object under illuminant A are

z = Φ · [0.5, 0.5, . . . , 0.5]T (59)

= [54.8, 50.0, 17.8]T, (60)

which is a vector in human colour space, expressed in CIE XY Z coordinates.
To find the metamer mismatch body M(z; Φ,Ψ), find minimum and maximum vertices

in any given direction. Let us choose the luminance direction, given by the CIE coordinate
Y, with corresponding functional

FY (X, Y, Z) = αXX + αY Y + αZZ (61)

= 0 ·X + 1 · Y + 0 · Z (62)

= Y. (63)
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The vector [0, 1, 0] of coefficients for FY can be thought of as a direction in XY Z-space.
The level surfaces of FY are constant-luminance planes that are parallel to the X-Z-plane
and fill the entire space. The minimum and maximum planes just touchM(z; Φ,Ψ) without
intersecting its interior. The body as a whole lies between these planes, and at least one
vertex is in each plane.

To minimize or maximize FY , which is a functional on three-dimensional colour space,
pull it back by Ψ to R31, producing a linear functional Ψ∗FY with 31 components:

(Ψ∗FY )i = αXΨ1i + αY Ψ2i + αZΨ3i (64)

= 0 ·Ψ1i + 1 ·Ψ2i + 0 ·Ψ3i (65)

= Ψ2i. (66)

Ψ∗FY in this case is just the second row of Ψ, because of FY ’s simple component expression.
Linear programming will minimize and maximize Ψ∗FY over Φ−1(z0) ∩ χ, which is the

metamer set of z, i.e. the set of reflectance spectra that are metameric for humans to the 50%
reflectance spectrum under Illuminant A. The Octave/Matlab routine glpk.m is a convenient
LP solver, because the constraints for individual reflectances xi have the simple box form
0 ≤ xi ≤ 1. The Octave call

xmin = glpk(Ψ∗FY ,Φ,[54.8, 50.0, 17.8]T,031×1,131×1) (67)

finds a reflectance spectrum xmin(λ) that minimizes FY over M(z; Φ,Ψ), while the call

xmax = glpk(−Ψ∗FY ,Φ,[54.8, 50.0, 17.8]T,031×1,131×1) (68)

finds a reflectance spectrum xmax(λ) that maximizes it.
Figures ?? and ?? show the minimizing and maximizing reflectance spectra. As must be

the case, at least 28 of the percentages are either 0 or 1. In these two cases, exactly 28 are
either 0 or 1. The three percentages that are strictly between 0 and 1 are marked with a
star. The corresponding vertices of M(z; Φ,Ψ) are

Ψ · xmin = [54.7, 44.7, 65.0]T, (69)

Ψ · xmax = [40.2, 55.3, 43.7]T, (70)

so the planes Y = 44.7 and Y = 55.3 just boundM(z; Φ,Ψ), and touch it at those vertices.
For comparison, the Ψ-image of the 50% grey that produced z is

Ψ · [0.5, 0.5, . . . , 0.5]T = [47.5, 50.0, 54.4]T. (71)

It is inside M(z; Φ,Ψ), and its Y -coordinate is between 44.7 and 55.3, the minimum and
maximum values for Y.

Similarly to FY , we could define linear functionals FX and FZ that minimize and maximize
X and Z overM(z; Φ,Ψ). Linear programming will produce planes of the form X = ... and
Z = ... that bound M(z; Φ,Ψ) and touch it at (at least) one vertex. Together, these six
planes (a minimum and maximum plane for each of X, Y, and Z) form a rectangular box
which is a crude approximation toM(z; Φ,Ψ), becauseM(z; Φ,Ψ) is completely inside this
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Figure 1: The Minimizing Reflectance Spectrum xmin
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Figure 2: The Maximizing Reflectance Spectrum xmax
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Figure 3: The Metamer Mismatch Body for a 50% Grey, Under Illuminants A and D65

box, and touches each of its six sides. (Ohta and Wyszecki present a similar box in Figure
6 of a 1975 paper.??) Additional bounding planes, say in the direction of the functional
X + Y + Z, would slice off corner sections of the rectangular box, leading to a polyhedron
that better approximates M(z; Φ,Ψ) and touches it at more points. Further directions, of
course, would further refine the polyhedron.

While a containing polyhedron is one natural approximation, another, perhaps more
natural, approximation is the convex hull of the vertices where M(z; Φ,Ψ) touches the
polyhedron. Figure ?? shows M([54.8, 50.0, 17.8]T,Φ,Ψ) as a convex hull of the vertices
obtained by setting i = 5 in Equation (??). This value of i produced 3120 different directions
and 338 vertices. Increasing i to 6 produced 7224 directions, but only 440 vertices. Since
more than doubling the number of directions only increased the number of vertices by about
30%, it is likely that many vertices were being found again, but for different bounding planes.
These diminishing returns suggest that, after some point, further refinements will not justify
the additional computation.

For the example just presented, the implementation in DrawMetamerMismatchBody.m
took about 10 seconds when run with i = 5, and about 27 seconds when run with i = 6.
No attempt was made to optimize the implementation, nor to tune the testing computer (a
Macbook Pro laptop) for faster performance.

4 Comparison with Previous Work

Section 3.8.5 of Wyszecki and Stiles’ classic reference?? outlines some algorithms for finding
metamer mismatch bodies, including some LP methods. The non-LP methods, however,
are generally inexact and slow, and some make debatable (though plausible) assumptions
about the density of metamers within the body. Many of the methods generate a large set

c© 2016 Paul Centore 18



AN OPEN-SOURCE ALGORITHM FOR METAMER MISMATCH BODIES

of points within the MMB, and fit an ellipsoid to that set, to approximate the boundary—
the possibilities for misleading results are obvious. Computationally, the main difficulty
is that reflectance spectra have many dimensions, typically 31 for practical applications;
consequently, a metamer set cannot be estimated very well, and the same goes for an MMB,
which is the linear image of a metamer set.

Another issue is whether an algorithm finds points interior to the MMB, or only on its
boundary. Since MMBs are convex, it is determined by its boundary. Non-LP methods
typically find many points inside the MMB, and extrapolate out to the boundary. The LFG
algorithm and the current algorithm, by contrast, only find boundary points, much reducing
the computational load.

Wyszecki and Stiles also discuss LP algorithms. Eugene Allen introduced LP for MMBs
in a 1969 paper?? and showed some results, although he gave next to no details about the
method. In 1975, Ohta and Wyszecki?? presented an explicit LP formulation for Allen’s
method. While the current paper views an MMB as the convex hull of its vertices, Allen
viewed an MMB in terms of its projection onto the X-Y -plane in CIE XY Z space. For a
given (X, Y ) in the X-Y -plane, an MMB attains a minimum and a maximum Z, which can
be joined to make a vertical line segment over (X, Y ). By convexity, the MMB is the totality
of these line segments. In our terminology, Allen would have introduced two additional
constraints:

31∑
i=1

Ψ1,ixi = X, (72)

31∑
i=1

Ψ2,ixi = Y, (73)

and minimized and maximized the functional

FZ = Z. (74)

The resulting reflectance spectra have up to five values strictly between 0 and 1, while ours
have no more than three—this difference occurs because our reflectance spectra map only to
vertices of the MMB, while Allen’s map to arbitrary boundary points. Allen’s method also
requires an additional check that there exists at least one spectrum x satisfying Equations
(??) and (??). Many current LP implementations, however, automatically check for this
kind of consistency.

The current description of the LP approach makes no claim to originality, but rather
aims at simplicity, accessibility, and completeness. In 2016, when ready-made software for
linear programming and convex hulls is readily available, implementation is much easier than
it was in Allen and Wyszecki’s day. The openness, readability and readiness for use of the
accompanying routine DrawMetamerMismatchBody.m will hopefully save other researchers
time and effort. In addition, previous papers have many gaps. For example, Ohta and
Wyszecki state without proof (3rd paragraph of p. 329 of Ref. ??) that most reflectance
values for spectra of MMB boundary points are either 0 or 1. Schmitt?? makes similar
statements on p. 603 of his 1976 paper, again without support. While their statements are
correct, they should be proven. Sect. ?? of the current paper provides a proof, while other
sections fill similar gaps in previous derivations.
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The LFG algorithm, developed in 2014, is notable for finding exact boundary points of
an MMB, but without using linear programming. Their approach combines Φ and Ψ into
a six-dimensional linear transformation Υ, so that both colour signal maps are considered
simultaneously. (Allen suggested the same “six-dimensional hypervolume in the combined
color space” on p. 38 of Ref. ??.) Points on the boundary ofM(z; Φ,Ψ) are then related to
points on the boundary of Υ(χ), which, in analogy to Schrödinger’s optimal colours,?? are
well-approximated by reflectance spectra whose values are either 0 or 1, with at most five
transitions between those values. After choosing a starting point within the MMB, and a
direction, a set of six equations involving both Φ and Ψ is derived, which finds the boundary
point on the MMB in the given direction from the starting point, as well as the corresponding
reflectance spectrum. A Matlab implementation then solves those equations numerically, in
as many directions as desired.

5 Summary

This paper has presented a simple algorithm, and a concise, open-source Octave/Matlab
implementation, for constructing metamer mismatch bodies. A metamer mismatch body
is viewed as the convex hull of a set of vertices, and the vertex in a particular direction is
formulated as a linear programming problem that minimizes or maximizes a functional in
that direction. A metamer mismatch body is the linear image of a metamer set. Since the
metamer set is the intersection of an affine subspace (the pre-image of a colour output under
a known colour signal map) and the set of reflectance spectra, it can be readily expressed
as a set of constraints. The linear functional is pulled back from the mismatch body to the
metamer set, and the linear programming problem is solved on the metamer set. The result is
a reflectance spectrum, whose image is a vertex of the mismatch body. Once enough vertices
in enough directions are known, the convex hull of the vertices is a good representation
of the body. The algorithm is derived rigorously, summarized in pseudo-code, and tested
with a simple example involving human vision, Illuminant A, and Illuminant D65. A final
discussion places the linear programming approach in historical context, showing that it
was well-established by the 1970s, but has recently been overlooked. An accompanying
Octave/Matlab implementation, DrawMetamerMismatchBoundary.m, containing about 30
source lines of code, has been released as open source; other researchers are invited to use and
modify it, on the understanding that they will make their modifications publicly available.
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