
Enforcing Kubelka-Munk Constraints for Opaque Paints

Paul Centore

c© January 24, 2016

Abstract
The Kubelka-Munk model relates the colours of paint mixtures to the absorption

and scattering coefficients (K and S) of the constituent paints, and to their concen-
trations (C) in the mixtures. All K’s and S’s are non-negative, and C’s are phys-
ically constrained to be between 0 and 1. Standard estimation procedures cast the
Kubelka-Munk relationships as an overdetermined linear system, and apply ordinary
least squares (OLS). OLS, however, sometimes produces coefficients or concentrations
that are less than 0 or greater than 1. These physically impossible solutions occur
because OLS projects a target vector (such as a desired reflectance spectrum) onto a
vector subspace, while in fact the set of physically realizable paint combinations is a
convex polytope, which is a subset of that subspace. This paper reformulates Kubelka-
Munk estimation problems geometrically, as the problem of finding the point on that
polytope that is closest to a target vector. The solutions to the reformulated problem are
always physically realizable. If feasible, a worker could solve the reformulated problem
with a ready-made commercial solver. Otherwise, the Gilbert-Johnson-Keerthi (GJK)
algorithm is recommended as especially suitable for Kubelka-Munk estimation; this al-
gorithm has been tested on some simple cases and released as open-source code.

1 Introduction

The Kubelka-Munk model1 predicts the reflectance spectrum of a mixture of opaque paints
from the absorption coefficients (K), scattering coefficients (S), and concentration (C), for
each constituent paint. Physical limits constrain K, S, and C. A paint cannot absorb or
scatter a negative fraction of incoming light, so K and S must be non-negative at each
wavelength. Similarly, a paint’s concentration in a mixture is between 0 and 100 percent, so
each C is also between 0 and 1. Furthermore, all the C’s must sum to 1.

Two typical Kubelka-Munk problems are to estimate the K’s and S’s from a measured
set of mixtures of known concentrations, and to estimate the concentrations of constituent
paints, whose K’s and S’s are known, in a target paint. Standard approaches to such
problems, such as the algorithms of Walowit, McCarthy, and Berns,2,3 recast the Kubelka-
Munk relationships into an overdetermined linear system of the form

Mx = b, (1)

where M is a matrix with more rows than columns, x is a column vector to be solved for,
and b is a target column vector. Depending on the situation, x might be a vector of K’s and

1



PAUL CENTORE

S’s, or a vector of concentrations. Equation (1) likely cannot be solved exactly, so instead
ordinary least squares (OLS) is used to find an x that minimizes the Euclidean distance
between Mx and b.

The OLS solution, however, can have difficulties: some entries in x can be negative or
exceed 1, violating the physical constraints on K, S, and C. The current paper suggests a
reformulation of Equation (1), that insures that a solution satisfies physical constraints.

The left side of Equation (1) can be interpreted as a subset of the vector space Rr, where
r is the number of rows in M. Mx is seen as a set of linear combinations of the columns
of M, with the restriction that any combination’s coefficients appear in the vector x. For
ordinary least squares, which places no restrictions on x, Mx is the column space of M,
denoted col(M), and is a vector subspace of Rr. Assuming a Euclidean metric, the target
vector b can be projected onto the point bcol(M)

in col(M) that is nearest to b. Since bcol(M)

is in col(M), an exact (though possibly not unique) solution to Mx = bcol(M)
can be found;

in fact, the OLS method finds such a solution, and also minimizes Mx− b.
The main geometric idea in this paper is to incorporate the constraints on x into the set

Mx. The target vector b will then be projected to the closest point bP on the constrained Mx.
As a result, there will exist a solution which not only satisfies Mx = bP exactly, and Mx = b
as closely as possible, but which also satisfies all the constraints. The constrained Mx is a
subset of col(M), and the subset relationship explains why OLS sometimes gives unrealistic
results. While bcol(M)

is in col(M) by design, it might not belong to the constrained Mx. If

it does not, then the OLS solution will necessarily violate some physical constraint. If bP is
in the constrained Mx, on the other hand, then a physically valid solution will exist.

The approach presented in this paper, and its two Kubelka-Munk applications, depend
on the fact that the constrained Mx is a convex polytope P. While constraints on x will
not always make Mx a convex polytope, many sets of constraints will, including those
encountered in Kubelka-Munk problems. A polytope is the convex hull of a finite set of
generating points in Rr. As such, it is bounded, so each entry of x must have a lower and
upper bound. The entries for Kubelka-Munk cases will be K’s, S’s, and C’s, all of which can
be chosen to be between 0 and 1 for opaque paints. Convexity insures that the projection
point bP is unique.4 In this context, projection does not mean orthogonal projection; rather
bP is the point on P whose distance to b is a minimum.

Various algorithms can be used to calculate bP . Many workers would be satisfied with
a commercial solver and never inquire about the algorithm; other workers, however, would
prefer a more hands-on approach. For the latter group, the Gilbert-Johnson-Keerthi (GJK)
algorithm5,6 is recommended as particularly suitable for calculating bP for Kubelka-Munk
estimation problems. The GJK algorithm is a fast, iterative method that finds the minimum
distance between two convex polytopes. In this paper, the first polytope is the set Mx, and
the second polytope is the point b. The GJK algorithm expresses bP as a linear combination
of generators, which, in the Kubelka-Munk cases to be considered, are columns of M. The
coefficients in that expression can be taken as entries in x : they not only solve Mx = bP ,
but also satisfy the constraints. Since bP minimizes the distance from Mx to b, this solution
is in fact a least squares solution to Equation (1). The GJK algorithm has been tested
successfully on a few Kubelka-Munk problems that arose in practice, and an open-source
implementation is available on the author’s website.

c© 2016 Paul Centore 2



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

This paper applies the geometric reformulation to two Kubelka-Munk problems involving
opaque paints. The first problem estimates the concentration Ci of the ith base paint in a
mixture, when all Ki’s and Si’s are known. Concentrations are between 0 and 1, and sum
to 1:

0 ≤ Ci ≤ 1 for all i, (2)
n∑
i=1

Ci = 1. (3)

The second problem estimates the K’s and S’s (at one wavelength) for a set of n base paints
from spectral measurements of mixtures of those base paints. All paint films are assumed to
be masstones, that is, they are applied thickly enough to be opaque for practical purposes.
K is the instantaneous rate at which incoming light is absorbed by the paint film, and S is
the rate for scattering. Both K and S must be non-negative, so the following constraints
hold for every i from 1 to n:

0 ≤ Ki, (4)

0 ≤ Si. (5)

We will see that the absolute magnitudes of the K’s and S’s are not important for opaque
paints, but that the ratios of any K or S to any other K or S are. Without loss of generality,
then, we could multiply each K and S by a positive constant, so that they satisfy the
constraint

n∑
i=1

(Ki + Si) = 1. (6)

This paper is organized as follows. First, the geometric reformulation will be presented,
along with a brief discussion of implementation. Then, the Kubelka-Munk model will be used
to derive expressions of the form Mx = b, where x = [C1, C2, . . . , Cn] in the first case, and
x = [K1, K2, . . . , Kn, S1, S2, . . . Sn] in the second case. In both cases, there will be constraints
on x, and the set Mx will be shown to be a convex polytope, whose generators are just the
columns of M. This information is sufficient for calculating bP , and the expression for bP
as a convex combination of the generators will lead to solutions for x. Next, this approach
will be compared to other Kubelka-Munk approaches. Finally, an appendix will describe the
GJK algorithm, and its suitability in the Kubelka-Munk context.

2 Reformulating Constrained Least Squares Problems

While often treated as ordinary least squares (OLS) problems, many Kubelka-Munk calcula-
tions in fact lead to constrained least squares (CLS) problems. This section outlines the OLS
and CLS problems, and shows geometrically why the methods used for OLS problems some-
times do not satisfy the desired constraints. A geometric interpretation of the CLS problem,
as the projection of a target vector onto a convex polytope, motivates non-OLS algorithms
whose results do satisfy the constraints. Practical implementations of such algorithms are
briefly discussed.

3 c© 2016 Paul Centore



PAUL CENTORE

2.1 OLS and CLS Problems

A least squares problem arises in the context of a linear system

Mx = b, (7)

where M is a matrix, and x and b are column vectors. M and b are assumed to be known,
and x is to be solved for. In many practical cases, because of measurement or model error,
no x satisfies Mx = b exactly. Instead, one finds an x̂, called a least squares (LS) solution,
that satisfies Mx = b as closely as possible. Closeness is measured by the coordinate-wise
sum of squared residuals (SSR) between Mx̂ and b:

SSR =
∑
i

((Mx̂)i − bi)2 , (8)

where the subscript i denotes the ith coordinate. Minimizing Equation (8), when there are
no restrictions on x̂, is the ordinary (or unconstrained) least squares (OLS) problem.

The constrained least squares (CLS) problem is to minimize (8) when there are restric-
tions, or constraints, on the coordinates of x. For example, the ith coordinate xi might have
to satisfy ai ≤ xi ≤ bi. In general, many constraints are possible. We will see a Kubelka-
Munk example in which not only must each coordinate be between 0 and 1, but also the sum
of the coordinates must be 1. While the OLS problem has a simple closed-form solution,7

CLS solutions usually do not, and tend to be much more demanding computationally. A
main result of this paper is a geometric formulation for some CLS problems that arise when
using the Kubelka-Munk model. The geometric formulation, in which Mx is viewed as a
convex polytope, can use non-OLS algorithms.

2.1.1 Constructing a Convex Polytope

While the system Mx = b is written algebraically, it can also be interpreted geometrically.
The geometric interpretation will transform the system into a point and a convex polytope,
between which the shortest distance is sought. The polytope will be naturally expressed
as the convex hull of a set of vectors, called generators. This section describes the convex
polytope, and shows how the generator form arises naturally.

Geometrically, the matrix M, which has r rows and c columns, can be viewed as a
linear transformation from the vector space Rc to the vector space Rr. The vector b on the
right side of Equation (7) is a target vector in Rr. The left side, Mx, can be seen as a
set of linear combinations of the columns of M. In fact, each column of M can be seen as
a vector in Rr. The ith column, Mi, is the image under M of the vector x which is zero
in all coordinates except the ith, where it takes on the value 1. If the variables in x are
unconstrained, then Mx is just the column space (or equivalently the range) of M, which is
the subspace of Rr generated by the column vectors. Denote this subspace by col(M). While
there is considerable structure in a subspace, for now it is best just to view it as a subset S
of Rr. The form of this subset S will change if various constraints are placed on x.

If Mx is seen as a set S, then Equation (7) is a geometric problem involving distances:
what point bS on S is closest to b? Once we have found such a bS, the equation Mx = bS

c© 2016 Paul Centore 4



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

will have an exact (though possibly not unique) solution, because bS is in the range of M.
Furthermore, that solution can be expressed so as to satisfy constraints on x, because those
constraints were incorporated into Mx. In fact, this method is used implicitly in OLS. The
set Mx is a subspace, and b is projected orthogonally onto that subspace. Closest points
are simple to calculate when S is a subspace, but can also be found whenever S is a convex
polytope.

A simple Kubelka-Munk case that produces a convex polytope occurs when x gives the
concentrations of a set of n base paints in a mixture. Concentrations are always between 0
and 1, and always sum to 1, so we have the constraints

0 ≤ xi ≤ 1, (9)
n∑
i=1

xi = 1. (10)

In Mx, the components xi are viewed as coefficients of linear combinations of the columns
of M. Placing the constraints (9) and (10) on the coefficients, however, causes Mx to be
the convex hull of the columns of M. This convex hull exists in Rr, and is generated by the
columns of M, where each column of M is considered as a vector in Rr. The convex hull of
a finite set of points is a convex polytope, whose ith generator is the ith column of M.

To sum up, the general approach to constrained least squares problems is to express the
set Mx as a convex polytope, and then to find the point bS in Mx that is closest to b. At least
one solution to Mx = bS is then guaranteed to exist and to satisfy the constraints. There
are still issues of solution uniqueness (and conceivably some solutions to Mx = bS satisfy
the constraints while other solutions do not), but in the problems investigated, algorithms
exist that quickly produce a valid solution.

2.1.2 Practical Implementations

The previous section reformulated CLS problems geometrically, and later sections will show
that this new formulation is suitable for some Kubelka-Munk problems. This reformulation
has been largely theoretical, but workers in the paint industry need practical implemen-
tations. Broadly speaking, a worker can either use a commercial solver, or implement an
algorithm himself. This section discusses the advantages and disadvantages of each approach.
For workers who desire their own implementation, the GJK algorithm is recommended as
an intuitive, easily-implemented algorithm that is tailored to Kubelka-Munk problems.

Commercial solvers have the obvious advantage of not requiring any programming effort,
but solvers can be expensive, and not all of them can handle constrained optimization prob-
lems. One solver that seems to is Matlab’s Optimization Toolbox, whose routine fmincon.m
minimizes a function f in the presence of constraints. Since the author has not actually
tested this routine, he cannot unqualifiedly recommend the Toolbox, but it appears to be an
option worth investigating; likely there are many other options, too.

Since the squared distance is a quadratic function, a quadratic programming (QP) solver
seems like a natural tool for finding the nearest point on a convex polytope. In fact, however,
QP likely would not work well in the Kubelka-Munk context. The reason is that the Kubelka-
Munk polytope will be expressed as the convex hull of a finite set of generators, while QP

5 c© 2016 Paul Centore



PAUL CENTORE

problems express a polytope as the intersection of a set of half-spaces. Converting between
the two kinds of expression can be computationally demanding, and would require writing or
purchasing additional code. Similarly, once the nearest point is found, it must be expressed
as a convex combination of the polytope’s vertices, since the coefficients of that combination
are the desired K’s, S’s, or C’s. Again, more code is required, thus undercutting the value
of a ready-made QP solver.

Another resource for CLS algorithms is Chapters 20 to 23 of Lawson and Hanson’s
standard text, Solving Least Squares Problems.8 Those chapters suggest multiple approaches,
including a heavily weighted constraint row, and interior methods that iterate to a point that
satisfies the Kuhn-Tucker conditions. While the algorithms presented draw on much rigorous
theory and practical experience, programming them is a difficult task that is left to the reader.
Possibly, however, implementations have now been included in some commercially available
solvers.

In case a satisfactory solver cannot be found, the appendix describes the GJK algorithm,
which is especially suited for Kubelka-Munk problems. Its only inputs are a target vector
and a set of generating vectors for the convex polytope; later sections will show how these are
easily calculated for the Kubelka-Munk problems of interest. The quantity to be minimized
has the special form of the distance (with regard to appropriate coordinate weightings) from
the target to the polytope. The author has tested the GJK algorithm for some simple
Kubelka-Munk cases, and released an open-source implementation on his website.

3 Kubelka-Munk Derivations

3.1 Linear Kubelka-Munk Relationships

The Kubelka-Munk model1 characterizes a paint by using an absorption coefficient, K, and
a scattering coefficient, S. Both coefficients are functions of wavelength, and both are non-
negative. If the paint is applied as a masstone, the bulk reflectance R can be related to the
ratio of K and S:

K

S
=

(1−R)2

2R
. (11)

For convenience, the right-hand side will be denoted as a function, f(R). A set of n paints
can be mixed together, in concentrations C1, C2, ...Cn, to produce a new paint, of a different
colour. If the ith paint has Kubelka-Munk coefficients Ki and Si, then a premise of the
Kubelka-Munk model is that the coefficients for the mixture are given by

Kmix = C1K1 + C2K2 + ...+ CnKn, (12)

Smix = C1S1 + C2S2 + ...+ CnSn. (13)

Equations (12) and (13) can be substituted into Equation (11) to give relationships for the
paint mixture as a whole:(

K

S

)
mix

=
C1K1 + C2K2 + ...+ CnKn

C1S1 + C2S2 + ...+ CnSn
=

(1−Rmix)2

2Rmix
. (14)

c© 2016 Paul Centore 6



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

For each mixture, rearranging Equation (14) gives a linear relationship:

−C1K1 − C2K2 − ...− CnKn +

(
K

S

)
mix

(C1S1 + C2S2 + ...+ CnSn) = 0. (15)

Substituting f(R) for (K/S)mix gives

−C1K1 − C2K2 − ...− CnKn + f(R) (C1S1 + C2S2 + ...+ CnSn) = 0. (16)

Indicate the dependencies explicitly, using λ to indicate a wavelength, and µ as an index
to the set of mixtures. Then Equation (16) becomes

−C1(µ)K1(λ)− C2(µ)K2(λ)− ...− Cn(µ)Kn(λ) + . . .

· · ·+ f(R(λ, µ)) (C1(µ)S1(λ) + C2(µ)S2(λ) + ...+ Cn(µ)Sn(λ)) = 0. (17)

Once dependencies are included, it is seen that Equation (16) is actually a set of equations,
one for each mixture-wavelength pair. The variables C depend only on the mixture, while K
and S depend only on the wavelength. The term f(R) connects the other terms, because it
depends on both the mixture and the wavelength. Typically, f(R) is calculated, via Equation
(11), from reflectance measurements made with a spectrophotometer.

The set of equations represented by (16) is basic to many Kubelka-Munk applications.
It can be partitioned into subsets by wavelength or mixture, depending on the problem of
interest. This paper will be concerned with two problems:

1. Estimating concentrations: If the K and S coefficients are known for each base paint
at each wavelength, and the reflectance spectrum of a target mixture has been measured,
then estimate the concentrations of the base paints in the target mixture.

2. Estimating K’s and S’s: If the concentrations of a set of mixtures are known, and the
mixtures’ reflectance spectra have been measured, then estimate K and S for each base
paint, at each wavelength.

The following subsections will treat these problems in greater detail.

3.2 Estimating Concentrations

When estimating concentrations, all the equations corresponding to one mixture are grouped
into one subset; this subset contains information from all wavelengths. Each subset gives
a linear system to be solved. If we let m denote the total number of mixtures, then there
will be m systems. For convenience, we will assume that reflectance measurements have
been made at 10 nm increments from 400 nm to 700 nm, so each system will consist of 31
equations.

The equation for a fixed wavelength λ and mixture µ can be written in vector form:

[f(R(λ, µ))S1(λ)−K1(λ), f(R(λ, µ))S2(λ)−K2(λ), ..., f(R(λ, µ))Sn(λ)−Kn(λ)]

C1(µ)
C2(µ)
...

Cn(µ)

 = 0. (18)

7 c© 2016 Paul Centore



PAUL CENTORE

To solve for the concentrations Ci in mixture µ, use equations from all the wavelengths
for mixture µ. When considering all wavelengths simultaneously, one should give greater
weight to wavelengths which humans are more sensitive to, or which affect perceived colour
differences more. Assign such a weight w(λ) to a relationship in the system by multiplying
both sides of that relationship by w(λ). Then Equation (18) becomes

[w(λ) (f(R(λ, µ))S1(λ)−K1(λ)) , ..., w(λ) (f(R(λ, µ))Sn(λ)−Kn(λ))]
 C1(µ)

...
Cn(µ)

 = 0.(19)

It is not quite clear how w(λ) should be chosen, and good cases can be made for differ-
ent choices; ideally w(λ) should correspond to perceived colour differences, which depend
not only on a reflectance spectrum, but also on an illuminant. This question will be left
aside for now, and the development will use the photopic luminous efficiency function9 to
provide weights. This function, denoted ȳ(λ), is a colour-matching function in standard CIE
colorimetry,10 and quantifies human visual response to stimuli at different wavelengths.

Combine the weighted equations into a single matrix expression:[
ȳ(400) (f(R(400, µ))S1(400)−K1(400)) ... ȳ(400) (f(R(400, µ))Sn(400)−Kn(400))
ȳ(410) (f(R(410, µ))S1(410)−K1(410)) ... ȳ(410) (f(R(410, µ))Sn(410)−Kn(410))

... ... ...
ȳ(700) (f(R(700, µ))S1(700)−K1(700)) ... ȳ(700) (f(R(700, µ))Sn(700)−Kn(700))

] 24 C1(µ)
...

Cn(µ)

35
=

24 0
...
0

35 . (20)

The matrix has 31 rows and n columns. The equation as a whole has the form Mx = b.
An obvious mathematical solution to Equation (20) would be Ci = 0 for every i. This

“solution” is rejected on physical grounds, because the concentrations must sum to 1. In ad-
dition, each concentration must be between 0 and 1. These two constraints can be expressed
formally:

0 ≤ Ci ≤ 1, (21)
n∑
i=1

Ci = 1. (22)

Any solution set of Ci’s must satisfy these constraints.
Section 2 has already shown how Equation (20) can be seen as a CLS problem. As a

set, the left side of Equation (20) is the convex polytope that is generated by the columns
of M. The target point is the origin, on the right side of Equation (20). The target point
and generators are inputs into an algorithm which produces the point bP on the polytope
that is nearest the origin. This “point” is actually a vector in R31, and defines a reflectance
spectrum which differs from the target reflectance spectrum by as little as possible. Since
bP is unique, the reflectance spectrum is unique.

Note that even though the reflectance spectrum is unique, the concentrations that pro-
duce it might not be: possibly, two disjoint subsets of base colorants could each combine to
produce the same reflectance spectrum. Most algorithms find only one set of concentrations
that produce the optimal reflectance spectrum. To find any others, substitute the optimal
reflectance spectrum for the zero vector on the right side of Equation (20). The result will
be a linear system, Mx = bP , with one known solution. Other solutions can be produced
by adding vectors (if any exist) in the kernel of M to that solution, being careful, of course,
that the sums do not violate the constraints.

c© 2016 Paul Centore 8



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

3.3 Estimating K’s and S’s

3.3.1 Least Squares Formulation

When estimating K’s and S’s, all instances of Equation (16) that correspond to one wave-
length are grouped into one subset, which contains information from all the mixtures. Each
subset gives a linear system to be solved. Since we are assuming 31 wavelengths, there will
be 31 systems in total. If there are m mixtures in total, then each of the 31 systems will
contain m equations.

The equation for a fixed wavelength λ and mixture µ can be written in vector form:

[−C1(µ),−C2(µ), ...,−Cn(µ), f(R(λ, µ))C1(µ), f(R(λ, µ))C2(µ), ..., f(R(λ, µ))Cn(µ)]


K1(λ)
K2(λ)
...

Kn(λ)
S1(λ)
S2(λ)
...

Sn(λ)

 = 0. (23)

To solve for K and S at the wavelength λ, combine equations from all m mixtures into a
single matrix expression of the form Mx = b:

−C1(1) ... −Cn(1) f(R(λ, 1))C1(1) ... f(R(λ, 1))Cn(1)
−C1(2) ... −Cn(2) f(R(λ, 2))C1(2) ... f(R(λ, 2))Cn(2)
... −... ... ... ... ...

−C1(m) ... −Cn(m) f(R(λ,m))C1(m) ... f(R(λ,m))Cn(m)




K1(λ)
...

Kn(λ)
S1(λ)
...

Sn(λ)

 =


0
...
0
0
...
0

 .(24)

The matrix has m rows and 2n columns. (As before, weights should be considered. Ref. 11
suggests one set of weights.)

3.3.2 The CLS Approach for K and S

In addition to Equation (24), the K’s and S’s are subject to some constraints. Some difficulty
arises in determining these constraints because there are competing interpretations of K and
S. In the first interpretation, Ki is the fraction of incoming light that is absorbed by a unit
thickness of the ith paint film, and Si is the fraction that is scattered. The remaining fraction,
Ti, is transmitted perfectly. Under this interpretation, we must have

Ki + Si + Ti = 1, (25)

and each Ki, Si, and Ti must be between 0 and 1. Furthermore, since Ti is not used in the
Kubelka-Munk analysis of opaque paint films, we must also have

0 ≤ Ki + Si ≤ 1 (26)

for every i.
In the second interpretation, however, K and S are not fractions of incoming light.

Rather, they are coefficients in the equations that describe how light interacts with a paint

9 c© 2016 Paul Centore



PAUL CENTORE

film. If I(t) is the power of the downward light at a depth t in the paint film, and J(t) is the
power of the upward light, then the Kubelka-Munk model1 posits two differential equations:

−dI
dt

(t) = −(K + S)I(t) + SJ(t), (27)

dJ

dt
(t) = −(K + S)J(t) + SI(t). (28)

If there were no scattering, then S would be 0, J(t) would be always 0, and Equation (27)
would simplify to

dI

−dt
(t) = −KI(t), (29)

whose solution is

I(t) = eKt. (30)

This example makes it clear that K represents the instantaneous rate at which the paint film
absorbs light, rather than a fraction of light which is absorbed. The second interpretation is
therefore significantly different from the first.

The first interpretation would apply when films are applied in discrete layers. For exam-
ple, a printing process might lay down a film of red ink or paint, and apply a second film,
of blue, on top of it. Each film would then absorb some fraction K, between 0 and 1, of the
light which reached it, transmit another fraction T, and scatter the remaining fraction S.
The three fractions would sum to 1, as posited by Equation (25). Rather than layering the
films, however, one could mix the two inks or paints directly and apply a single film of the
mixture. Equations (27) and (28) were derived under this assumption of mixing (and laying
down an opaque layer). In that case, the second interpretation applies. Since we are using
the Kubelka-Munk derivations for mixing, we will also use the second interpretation.

The signs in Equations (27) and (28) were chosen to make K and S non-negative, so for
every i we have the constraints

0 ≤ Ki, (31)

0 ≤ Si. (32)

The basic Kubelka-Munk relationship given by Equation (11), furthermore, shows that
a paint mixture’s colour depends not on the magnitudes of the constituent paints’ K’s
and S’s, but rather on their ratios. Suppose that every K and S in the vector x =
[K1(λ), ..., Kn(λ), S1(λ), ...Sn(λ)] were multiplied by a positive constant ε. As long as x sat-
isfies the constraints (31) and (32), the reduced vector εx also satisfies those constraints.
Equations (12) and (13) show that a mixture’s colour depends on the cross-paint ratios,
between, for example, K1 and K2, or S1 and S2. Multiplying every K and S by the same
constant ε preserves all such ratios, and thus all Kubelka-Munk quantities. Equation (24)
can be satisfied as nearly as desired, simply by choosing ε small enough, but multiplying by
ε does not really produce a new solution. We will impose an additional constraint to avoid
spurious distinctions between solutions that are constant multiples of each other:

n∑
i=1

(Ki + Si) = 1. (33)

c© 2016 Paul Centore 10



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

Any set of K’s and S’s would satisfy this constraint if multiplied by an appropriate ε, so
there is no loss of generality in this imposition.

The vector x consists of the Ki’s for each base paint, followed by the Si’s for each base
paint. Constraint (33) therefore says that the 2n entries of x sum to 1. Constraints (31)
and (32) say that each entry of x is non-negative. Since the non-negative entries sum to 1,
each entry itself is less than or equal to 1. Constraints (31) through (33) could therefore be
rewritten as

0 ≤ xi ≤ 1, (34)
2n∑
i=1

xi = 1. (35)

Surprisingly, these constraints are formally equivalent to the constraints (21) and (22)
that occurred when estimating concentrations. This equivalence allows the CLS approach
for estimating K and S to follow the same path. The columns of the matrix in Equation
(24) become the generators of a convex polytope P. A CLS algorithm is applied to P to find
a convex combination of generators which is as close as possible to the zero vector (which
appears on the right-hand side of Equation (24)). The coefficients of this convex combination
are the xi’s, each of which is a K or S for some base paint. The CLS algorithm guarantees
that each K or S will satisfy the non-negativity constraint, so we can estimate physically
realistic K’s and S’s, as desired.

4 Comparison to Previous Work

Historically, it is unclear exactly when the least squares nature of Kubelka-Munk problems
was first recognized. As early as 1973, Gall12 presented the linear relationship that appears
in Equation (15), and, in 1987, Walowit, McCarthy, and Berns2,3 formulated Kubelka-Munk
estimation problems as a linear system. The derivation of Equations (20) and (24) follows
their approach. To avoid an all-zero “solution,” the three latter authors added a constraint,
requiring entries in x to sum to 1. Formally, a row of all 1’s was appended to M, and an
additional 1 was appended to b. The augmented linear system was then solved with ordinary
least squares.

Ordinary least squares can sometimes give a physically invalid solution, even when there
is a simple, valid solution. For example, suppose we are trying to solve

1 2 3
4 5 6
7 8 9
10 11 12


 C1

C2

C3


=


3
6
9
12

 . (36)

An obvious solution is [C1, C2, C3] = [0, 0, 1]. Ordinary least squares, however, as imple-
mented in the Octave/MATLAB routine ols.m, returns [C1, C2, C3] = [−1/6, 1/3, 5/6]. The
OLS solution would presumably be treated as invalid because it contains a negative number.

The possibility of physically invalid solutions was recognized early on. On p. 361 of Ref. 3,
which deals with calculating concentrations, the authors, following McGinnis,13 recommend

11 c© 2016 Paul Centore



PAUL CENTORE

discarding paints with negative concentrations, and rerunning the method with the remaining
paints. Solutions with negatives were simply discarded in some recent work of Koirala et
al,14 also involving concentration estimation. As the above example shows, this approach
might overlook a desirable solution.

Such situations in fact motivated the current paper. Physical reasoning implies that a
valid solution exists. Suppose one is looking for the concentrations in a mixture of base
paints that most closely matches a target paint. The mixture of any set of concentrations
will differ from the target by some amount. That difference could be measured by a difference
expression (DE), a sum of squared reflectance differences, or some other metric. Since any
set of concentrations gives a difference, at least one set of concentrations gives the minimum
difference. If an algorithm cannot find such a set, then the problem is with the algorithm,
and not with the physical situation. The current paper incorporates physical constraints
explicitly, so that algorithms can avoid invalid solutions.

In a series of papers,15-17 Cogno et al. presented another approach that also incorporates
constraints explicitly, but that only finds an approximate solution. Their methods apply to
concentration estimation problems; it is not immediately clear how to generalize them to
K and S estimation problems. The concentrations are used as the basis of a vector space,
and the constraints in (2) and (3) then define a convex polytope (in fact, a simplex) in
that vector space—this polytope is not the polytope constructed in the current paper. The
colour of the mixture defined by a point on the simplex differs from the target colour by
some amount, so that difference is a function on the simplex. The best mixture occurs when
that function is minimized over the simplex. If that function were linear (or quadratic)
in the concentrations, then linear (or quadratic) programming algorithms could be used.
Though the difference function is neither linear nor quadratic, Cogno et al. suggest some
approximations that make it nearly linear or quadratic, at least locally, so that algorithms
involving programming techniques give useful results. The current paper differs from Cogno’s
approach by only using exact expressions: the distance we are minimizing really is the least-
squares difference function between the target colour and a paint mixture.

5 Summary

To sum up, the present paper modifies some OLS Kubelka-Munk algorithms to produce
only physically valid solutions. Physical constraints are incorporated directly, by restricting
the domain of the OLS problem. In two problems of interest (estimating concentrations
from reflectance spectra and K’s and S’s, and estimating K’s and S’s from spectra and
concentrations), this domain is a convex polytope. The problems then reduce to finding the
point on that polytope that is closest to a target point. An optimization algorithm, such
as GJK, finds this closest point, and expresses it in terms of some generating vectors for
the polytope. From this expression, one can work backwards to Kubelka-Munk quantities of
interest, such as K’s, S’s, and C’s. Now that the general approach has been outlined, it is
hoped that it can be applied to further estimation problems.

c© 2016 Paul Centore 12



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

6 Appendix: The GJK Algorithm

6.1 Algorithm Setting

The Gilbert-Johnson-Keerthi (GJK) algorithm5 was introduced in 1988. The algorithm finds
the shortest distance between two convex polytopes in a Euclidean space of arbitrary finite
dimension.

A convex polytope in Rr is most easily defined as the convex hull of a finite set of points.
Formally, suppose V = {v1, v2, ..., vk} is a set of points in Rr. Then co(V ), the convex hull
of V, is given by

co(V ) =

{
k∑
i=1

αivi

∣∣∣∣∣
k∑
i=1

αi = 1 and 0 ≤ αi ≤ 1∀i

}
. (37)

Intuitively, convex polytopes generalize convex polygons and polyhedra to an arbitrary
number of dimensions. Polytopes in three dimensions can be thought of as bodies with
corners, sharp edges, and flat faces; in higher dimensions, a polytope’s boundary is similarly
a union of flat objects of lower dimension. (See Chap. 8 of Ref. 4 for proofs and further
details.) The requirement that a polytope be generated by a finite set of points means
that curved surfaces such as spheres cannot be polytopes. Polytopes are not required to be
fully dimensional. For example, a line segment in R3 is a polytope, as is a triangle. Convex
polytopes are always closed and bounded. The set of generating points for a convex polytope
is not unique. A cube, for example, is a polytope, one of whose generating sets is its eight
vertices; the union of the cube’s vertices and the cube’s center is again a generating set.

Though the GJK algorithm can take two convex polytopes as input, the Kubelka-Munk
applications studied in this paper need only a special case: one of the polytopes is a target
point b. The GJK algorithm then determines the minimum distance from the target point
to the polytope, the point bP on the polytope which is closest to the target point, and an
expression for bP as a convex linear combination of the generators, as in Equation (37). In
some cases, the coefficients of the convex combination are actually the entries of the vector
x, in a matrix equation Mx = b. In these cases, which include the Kubelka-Munk problems
presented here, the GJK algorithm actually provides a least squares solution to Mx = b.
While that solution might not be unique, it will at least be a valid solution which satisfies
the given constraints. In other cases, x can be written as a function of the coefficients, still
allowing a solution.

6.2 Algorithm Description

The GJK algorithm will be explained with a two-dimensional example, which extrapolates
easily to higher dimensions. Suppose that a convex polytope P in R2 is generated from a
finite set V of points vi, i = 1, ..., k, as shown in Figure 1. While all the extreme points, or
corners, of P are points in V, there can also be points of V, such as v4 and v6, in the interior
of P. The interior points are superfluous but harmless: the algorithm will reach the same
result whether or not they are present. A target point b is also shown. The GJK algorithm
finds the point bP on P which is closest to b. The convexity of P guarantees that such a

13 c© 2016 Paul Centore



PAUL CENTORE

v1
v2

v3
v4

v5
v6

v8

v9

b

P

v7

Figure 1: Two-Dimensional Example for GJK Algorithm

point exists and is unique (see Sect. 19.2 of Ref. 4). While b is often outside P, b can also
be inside P, or on its boundary; in such cases the distance to P is 0, and the closest point
bP is just b itself.

An important concept for the GJK algorithm is the support function. The support
function ρd,u uses a unit direction vector d, which originates at a point u, as shown in Figure
2. Given any point v in the space, the support of v, relative to d and u, is defined as

ρd,u(v) = (v − u) · d. (38)

Geometrically, the vector d can be extended to a line, with the point u indexed by 0. Other
points on this line are indexed by their distance from u, with positive points in the direction
of d and negative points in the direction of −d. The point v can be projected perpendicularly
onto this line. The index of the projection point is then the support of v, relative to d and
u. The GJK algorithm uses the support function to move across P in certain directions,
approximately towards b. When the algorithm has converged, the generating points that
make a non-zero contribution to bP will all have minimum support, and no further reduction
is possible.

The GJK algorithm begins by choosing a subset W of V. W can contain up to n + 1
points, where n is the dimension of the space. The points should be affinely independent so
that they generate a simplex. Apart from these restrictions, the choice of W is arbitrary. In
two dimensions, W will be either a single point, two points which define a line segment, or
three points which define a triangle. For simplicity, W can be chosen to be a single point.
For purposes of illustration, we will start with the points v3, v6, and v8, shown in Figure 3,
which generate a triangle.

Once W has been chosen, the convex hull co(W ) of its elements will form a simplex, such
as the triangle in Figure 3. At this point, Johnson’s sub-distance algorithm6 can be used
to determine the point bW on co(W ) that is closest to b, as well as the minimal subsimplex

c© 2016 Paul Centore 14



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

u

v1
v2

v3 v4

v5
v6

v8

v9

P

v7

d

support = 0

support = 1

support = -1

support = 2

Figure 2: The Support Function

of co(W ) that contains bW . In Figure 3, for example, the point bW is on the line segment
generated by v8 and v6. That line segment is the minimal subsimplex. Since v3 is not needed
to generate this subsimplex, discard v3 from W. Johnson’s algorithm returns not just the
minimal subsimplex, but also an expression for bW as a convex combination of the polytope’s
generators. In the figure, for example, bW = 0.85v8 + 0.15v6.

Information about W is useful, but there are also many points of P that are outside W
that should also be considered. For the next step, Figure 4 shows how the support function
expands the minimal W into a new simplex that contains points of P that are closer to b.
Construct the unit vector d that originates at b and points toward bw. Calculate the support
for each point in V, relative to d and b. Choose a point vi of minimal support, and add vi to
the set W. It is possible for the support to be negative, and a point with negative support
should be chosen over a point with positive support, so that none of the set P is neglected.
In Figure 4, the point v9 has minimal support, so it was added to the new W that is shown
there. This step has some subtleties. It is possible that the “simplex” created from the union
of W and the new point has a smaller dimension than a simplex with that many vertices
would. In that case, one must delete further points from W, try a different new point, or
adjust one of the points very slightly.

Now iterate over the previous two steps:

1. Find the nearest point bW on the simplex generated by W, and extract the minimal
containing subsimplex.

2. Find a point whose support, with respect to the vector from b towards bW , is as small
as possible, and that still makes a simplex when added to W. Add that point to W.

These two steps will produce a series of points bW , that terminate in the desired bP . The
algorithm terminates when all points of minimal support are already contained in the current
W. Figure 5 shows the termination for the example, which occurs after the second set W

15 c© 2016 Paul Centore



PAUL CENTORE

v1
v2

v3
v4

v5
v6

v8

v9

b

W

P

v7 b
W

Figure 3: Choosing a Simplex in the Polytope P

v1
v2

v3 v4

v5
v6

v8

v9

b

W

P

v7 b
W

support = 0

support = -0.7

Figure 4: Choosing a New Simplex in the Polytope P

c© 2016 Paul Centore 16



ENFORCING KUBELKA-MUNK CONSTRAINTS FOR OPAQUE PAINTS

v1
v2

v3
v4

v5
v6

v8

v9

b

W

P

v7

b
P

Figure 5: Termination of the GJK Algorithm

has been constructed. The point bP is contained in the minimal subsimplex generated by v8

and v9. The support function of bP − b takes on a minimum only at v8 and v9, which are
already in the latest W. Geometrically, the vector from b to bP is perpendicular to an edge of
P, so both vertices for that edge will have the same support. In three dimensions, the vector
from b to bP could be perpendicular to a bounding face, all of whose vertices have the same
minimal support. Analogues hold for higher dimensions. Again, the Johnson sub-algorithm
provides an expression for bP . In this case, bP = 0.6v8 + 0.4v9.

The GJK algorithm is very fast. The reason for its speed is that generally only a small
number of simplices are needed, and the simplices themselves require only a few vertices,
often less than half a dozen. (The slowest part of the algorithm is evaluating the support
function.) This speed, however, requires that the polytope of interest be expressed by a set
of generating vectors. Although the polytope is implicitly a convex hull of its generators,
a surprising GJK feature is that there is no need to calculate the convex hull directly.
This features saves time, too, because finding convex hulls can be slow, especially in high
dimensions. Fortuitously, the Kubelka-Munk model produces polytopes with just these
kinds of generators. Another convenient feature for Kubelka-Munk problems is that the
GJK algorithm expresses the closest point as a convex combination of the generators. The
derivations show that the coefficients in this combination are in fact the desired K’s, S’s, and
C’s. Other algorithms or solvers might find bP , but not express it as a convex combination,
so additional effort might be needed to extract the desired quantities. Overall, the GJK
algorithm seems tailor-made for the Kubelka-Munk problems that motivated this paper.

17 c© 2016 Paul Centore



PAUL CENTORE

References

1. Eugene Allen, ”Colorant Formulation and Shading,” Chapter 7 of Optical Radiation Mea-
surements, Volume 2: Color Measurement, eds. Franc Grum & C. James Bartleson, Aca-
demic Press, 1980.

2. Eric Walowit, Cornelius J. McCarthy, & Roy S. Berns, “An Algorithm for the Optimiza-
tion of Kubelka-Munk Absorption and Scattering Coefficients,” COLOR Research and
Application, Vol. 12, Number 6, December 1987, pp. 340-343.

3. Eric Walowit, Cornelius J. McCarthy, & Roy S. Berns, “Spectrophotometric Color Match-
ing Based on Two-Constant Kubelka-Munk Theory,” COLOR Research and Application,
Vol. 13, Number 6, December 1988, pp. 358-362.

4. S. R. Lay, Convex Sets and Their Applications, Dover Publications, 2007.

5. Elmer G. Gilbert, Daniel W. Johnson, & Sathiya Keerthi, “A Fast Procedure for Comput-
ing the Distance Between Complex Objects in Three-Dimensional Space,” IEEE Journal
of Robotics and Automation, Vol. 4, No. 2, April 1988, pp. 193-203.

6. Rich Rabbitz, “Fast Collision Detection of Moving Convex Polyhedra,” in Section I.8 of
Graphics Gems IV (IBM version), ed. Paul Heckbert, Academic Press, 1994.

7. William H. Press, Saul A. Teukolsky, William T. Vetterling, & Brian P. Flannery. Nu-
merical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press,
2007.

8. Charles L. Lawson & Richard J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1974.

9. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data
and Formulae, 2nd ed. (New York: John Wiley & Sons, 1982).

10. CIE, Colorimetry, 3rd ed., CIE Publication No. 15:2004, Vienna, 2004.

11. Paul Centore, “Perceptual Reflectance Weighting for Estimating Kubelka-Munk Coeffi-
cients,” 2014, available at www.99main.com/∼centore.

12. L. Gall, “Computer Colour Matching,” pp. 153-178 in Colour 73, Adam Hilger, London,
1973.

13. Paul H. McGinnis, “Spectrophotometric Color Matching With the Least Squares Tech-
nique,” Color Engineering, Vol. 5, No. 6, pp. 22-27, November-December 1967.

14. Pesal Koirala, Markku Hauta-Kasari, Birgitta Martinkauppi, & Jouni Hiltunen “Color
mixing and color separation of pigments with concentration prediction,” Color Research
& Application, Vol. 33, No. 6, pp. 461-469, December 2008.

15. J. A. Cogno, D. Jungman, & J. C. Conno, “Linear and Quadratic Optimization Algo-
rithms for Computer Color Matching,” Color Research & Application, Vol. 13, No. 1, pp.
40-42, February 1988.

16. J. A. Cogno, “Recursive Quadratic Programming Algorithm for Color Matching,” Color
Research & Application, Vol. 13, No. 2, pp. 124-126, April 1988.

17. J. A. Cogno, “Mixed-Integer Programming Algorithm for Computer Color Matching,”
Color Research & Application, Vol. 13, No. 1, pp. 43-45, February 1988.

c© 2016 Paul Centore 18


