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Abstract
In a display with more than three primaries (called a multi-primary dis-

play), a color can be expressed as multiple combinations (called control se-
quences) of primaries. This paper presents an algorithm for assigning con-
trol sequences, that preserves current assignments when further primaries are
added. We call these control sequences extensible. It is shown that the gamut
of any number of primaries is a zonohedron, which can be dissected into par-
allelepipeds. Control sequences are assigned within each parallelepiped. The
current parallelepipeds remain when more primaries are added, so the current
assignments are preserved. Multi-primary displays can also cause unwanted
metamerism, and make continuous color scales appear discontinuous. The al-
gorithm avoids these problems. When viewed through natural filters, such as
yellowed ocular lenses, multi-primary displays can sometimes make two differ-
ent colors appear identical. If the primaries satisfy the Binet-Cauchy criterion,
which is always the case when all primaries are monochromatic, then these
spurious matches are avoided.

Keywords — Multi-primary display, metamerism, color, extensible, zonohedron,
Binet-Cauchy

1 Introduction
A pixel of a computer monitor, television, or other display device, can usually produce
three primaries: red, green, and blue. A primary is a colored illuminant whose
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intensity varies, but whose relative spectral power density does not. Combining the
primaries at differing intensities produces a wide gamut of colors. Recently, multi-
primary displays, involving more than three primaries, have been used to produce
an even wider gamut.

Since the human retina has three kinds of cones, human color space is inherently
three-dimensional. Algebraically, the set of linear combinations of three independent
primaries should span human color space. Physically, however, the coefficients in the
linear combination must be between 0 (no activation) and 1 (full activation). Because
of this restriction, any set of three primaries only spans a limited gamut. Adding
more primaries expands the device’s color gamut, but introduces metamerism: a
color in the gamut can result from many different combinations of the primaries,
instead of from a unique combination.

In 1931, the Commission Internationale de l’Éclairage (CIE) defined a standard
observer,1 who converts a color stimulus to three perceptual coordinates: X, Y, and Z.
Two color stimuli, such as two combinations of primaries, are perceptually identical,
to the standard observer, if and only if their XY Z coordinates are equal. If viewers’
visual systems conformed perfectly to the standard observer, then metamerism would
not cause any difficulties—but visual systems usually do not quite conform. As a
result, color matches may be spuriously made or broken, for a particular viewer.

When there are three primaries, each color results from a unique combination of
primaries, the specification of which is called a control sequence. When extending the
display gamut by adding more primaries, it is desirable to assign control sequences
to the entire gamut, such that they are consistent with the control sequences of the
original gamut. This consistency simplifies the process of converting between the
two gamuts. The algorithm presented in this paper possesses such extensibility, and
is believed to be the only assignment algorithm that does so.

Besides extensibility, an assignment algorithm should also avoid, or at least mit-
igate, three other problems that multi-primary displays can cause for viewers: non-
matches, non-smoothness, and spurious matches. In a non-match, two metameric
colors, produced by two different combinations of primaries, have equal XY Z coor-
dinates. Though the colors appear the same to the standard observer, they differ
slightly to many people. Non-smoothness occurs when a viewer perceives a color
scale as changing abruptly, even though it is a continuous curve through the gamut,
because of the combinations of primaries used to produce it. Spurious matches occur
when ambient lighting conditions, or filters, cause two colors, with different XY Z
coordinates, to appear identical.

The central insight of this paper is the zonohedral structure of the color gamut.
A zonohedron is the Minkowski sum of a set of vectors in R3. Each primary in a
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display is a vector in XY Z space. The gamut is the Minkowski sum of the primaries,
in three-dimensional XY Z space, and is thus a zonohedron. The paper gives a
natural dissection of the zonohedron into disjoint parallelepipeds, each of whose
sides is a translated primary vector. A practical contribution of the paper is a
simple, easily implemented dissection algorithm. The dissection requires an ordering
of the primaries, and different orderings can result in different dissections. The gamut
should be dissected at the start of a multi-primary design, and the dissection should
be used consistently throughout the design process.

For each parallelepiped in the dissection, assign an originating vertex. The three
primary vectors originating from that vertex are a basis, in the vector space sense:
each point in the parallelepiped is a unique linear combination of those primary
vectors. The dissection algorithm insures that the originating vertex itself is a sum
of a subset of primary vectors that does not include any of the three primary vectors
making up the edges. A point in the parallelepiped is therefore uniquely expressed as
a sum of the subset of primaries that add up to the originating vertex, and a unique
linear combination of the primary vectors making up the parallelepiped’s edges. This
sum defines a unique control sequence.

If more primaries are added, the gamut is expanded. This paper’s method of
expanding the gamut insures that the current parallelepipeds are also in the new
dissection. As a result, the points in the current gamut retain their current control
sequences. The assignment algorithm is therefore extensible: new colors can be
added without changing the representations of the current colors.

Apart from extensibility, the dissection algorithm has other desirable features.
Displaying any set of XY Z coordinates with a unique combination of primaries
avoids non-matches. Since every instance of an XY Z color is displayed with the
same combination of primaries, every instance will look identical to any viewer, no
matter how much he differs from the standard observer. In addition, it will be shown
that this parallelepiped dissection avoids discontinuities. Spurious matches can be
avoided if the primary spectra obey a criterion discussed in Section ?? below. Since
a set of monochromatic primaries (in the appropriate order) always satisfies this
criterion, spurious matches will not occur when all primaries are monochromatic;
this paper will focus on the monochromatic, or nearly monochromatic, case.
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2 Color Gamuts

2.1 Geometry of Display Gamuts

A display device produces a wide gamut of colors by “mixing” a limited set of pri-
maries. A primary is an illuminant of fixed relative spectral density, whose intensity
can vary, from 0 to some maximum, which can be denoted 1. The CIE’s XY Z
coordinates can be used to standardize human perception of both primaries, and
combinations of primaries. Geometrically, X, Y, and Z, are non-negative real num-
bers, that can be plotted in the positive octant of R3. Points in this octant can be
equally well viewed as vectors from the origin; the two viewpoints will be used inter-
changeably. A primary at full intensity is a point in the octant. A combination of
primaries, at varying intensities, is also a point in the octant. The set of all possible
combinations of primaries forms a solid in the octant, which is called the display’s
gamut. This section elucidates the display gamut’s zonohedral structure, which later
sections will use to assign control sequences extensibly.

Denote the number of available primaries byN. Display devices usually have three
primaries, that appear red, green, and blue. Devices with four or more primaries are
called multi-primary devices. Denote each primary by pi, where i = 1, . . . , N. A
primary at maximum intensity has a spectral density, pi(λ), which is a non-negative
function on the visible spectrum, from 400 nm to 700 nm. The CIE color-matching
functions1 can be used to transform pi into a vector vi = (viX , viY , viZ), in XY Z
coordinates:

viX =

∫ 700

400

x̄(λ)pi(λ)dλ, (1)

viY =

∫ 700

400

ȳ(λ)pi(λ)dλ, (2)

viZ =

∫ 700

400

z̄(λ)pi(λ)dλ. (3)

The display gamut, G, consists of all possible combinations of primaries, at all
intensities from 0 to 1:

G =

{
N∑

i=1

αivi

∣∣∣αi ∈ [0, 1]∀i

}
. (4)

A sequence of N coefficients αi, i = 1 . . . N, all of which are between 0 and 1, will be
called a control sequence. The set of all control sequences is written formally as

S = {(α1, α2, . . . , αN)|αi ∈ [0, 1]∀i = 1, . . . , N}. (5)
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In practical terms, a control sequence gives instructions to display some combination
of primaries, resulting in a particular color. Equations (1) through (3) are linear in
pi(λ). Therefore, the XY Z coordinate vector of a combination of primaries, such as
appear in Equation (4), is the sum, in the vector space sense, of theXY Z coordinates
of the individual primaries, multiplied by the appropriate αi. We can define a linear
transformation, T, from control sequences to XY Z space:

T (α1, α2, . . . , αN) =

(
N∑

i=1

αiviX ,

N∑
i=1

αiviY ,

N∑
i=1

αiviZ

)
. (6)

Geometrically, the primaries are seen as the vectors v1 through vN in the positive
octant. Equation (4) shows that the gamut G is the zonohedron generated by the
N primary vectors. A zonohedron is the Minkowski sum of a set of vectors. The
Minkowski sum (also called the vector sum) of two sets, A and B, in Rn, is defined
as

A⊕B = {a+ b|a ∈ A, b ∈ B}. (7)

More concretely, the Minkowski sum of A and B is the volume (or area) that B
sweeps out when its tail can be located at any point in A. The Minkowski sum is
both commutative and associative.

The Minkowski sum of two vectors is the parallelogram swept out by letting ei-
ther vector slide along the other. The Minkowski sum of a parallelogram and another
vector, not in the same plane, is the parallelepiped swept out by sliding the paral-
lelogram along that vector. Figure 1 shows the Minkoswki sum of a parallelepiped
and another vector in R3. The parallelepiped generated by {v1,v2,v3} appears on
the left. On the right is the zonohedron of {v1,v2,v3,v4}. To make the figure on
the right, place a copy of v4 at each vertex of the figure on the left, and then take
the convex hull; alternately, slide the parallelepiped on the left along the vector v4.

Zonohedra are convex and two-fold rotationally symmetric. They begin at the
origin, which corresponds to black, because no primary illuminants are being emitted.
Their vertices take the form

N∑
i=1

εivi

∣∣∣εi = 0 or 1, (8)

though not every sum of that form is necessarily a vertex.2 By the construction
in Figure 1, every edge of a zonohedron is a translation of a generating vector;
conversely, the construction shows that every generating vector occurs as an edge.
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Figure 1: Construction of Zonohedron

A zonohedron’s faces are all parallelograms, provided that no three generating
vectors are coplanar. This condition is technical and has little practical import, since
coplanarity is an unstable condition: adjusting any vector by the slightest amount
can destroy coplanarity. In the context of displays, there is always some slight
measurement uncertainty about the primaries’ tristimulus vectors, so an arbitrarily
small adjustment can be made if needed, to ensure this condition. Though they are
not labeled as such, Fig. 2 of a paper of Ajito3 and Fig. 1 of a paper of Kanazawa4

show zonohedral gamuts, for 4 and 6 primaries, respectively.
More details and examples of Minkowski sums and zonohedra appear in a recent

paper.5 In that paper, the generating vectors were tristimulus vectors for monochro-
matic spectral densities, and the zonohedron was the object-color solid. The gener-
ating vectors in that construction were in cyclic position: their chromaticities traced
out a convex curve on the chromaticity diagram. The cyclic property allows an easy
algorithm (Algorithm I) for the zonohedron:

1. From Equation (8), the vertices of the N -primary gamut must have all-or-none
activation of each primary, yielding 2N vertex candidates to be culled.

2. If the chromaticities of the primaries form a convex polygon in the chromaticity
diagram, continue. Otherwise (as with RGBW displays) turn off any of the
primaries (e.g., W ) that compromise the convexity.

3. Label the N primaries 1 through N clockwise around the convex polygon de-
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fined above. The result for four primaries would look like Fig. 7 in Ref. 5 (but
without 0 because black isn’t a point in chromaticity space).

4. Now enumerate vertices according to Equation (7) in Ref. 5 (using the example
of 4 primaries):

(a) The level-0 vertex is black: (0, 0, 0).

(b) The level-1 vertices are the primaries: v1,v2,v3,v4.

(c) The level-2 vertices are adjacent sums of pairs of primaries: v1 + v2,v2 +
v3,v3 + v4,v4 + v1. Note that adjacency is mod(4).

(d) The level-3 vertices are adjacent sums of single vectors with the level-2
pairs: v1 + v2 + v3,v2 + v3 + v4,v3 + v4 + v1,v4 + v1 + v2.

(e) The level-4 vertex is the sum of all primaries: v1 + v2 + v3 + v4. This is
the brightest color, usually white, and it is unique.

This completes the enumeration of the gamut’s vertices. There are 2 +N(N − 1) of
them—considerably fewer than the 2N candidates.

Expression (8) from Ref. 5 shows graphically how to construct edges and paral-
lelograms, producing Figure 2. The entries in Figure 2 are the zonohedron’s vertices.
Two entries are joined in Figure 2 if and only if the corresponding vertices are joined
by an edge. The parallelograms making up the zonohedron’s faces are evident. Some
vertices and edges appear twice in Figure 2, though they only appear once in the
gamut.

0

mmmmmmmmmmmmmmm 0

mmmmmmmmmmmmmmm 0

mmmmmmmmmmmmmmm 0

mmmmmmmmmmmmmmm

v1 v2

mmmmmmmmmmmmm v3

mmmmmmmmmmmmm v4

mmmmmmmmmmmmm v1

mmmmmmmmmmmmm

v1 + v2 v2 + v3

mmmmmmmmmmmm
v3 + v4

mmmmmmmmmmmm
v4 + v1

mmmmmmmmmmmm
v1 + v2

mmmmmmmmmmmm

v1 + v2 + v3 v2 + v3 + v4

nnnnnnnnnnnn
v3 + v4 + v1

nnnnnnnnnnnn
v4 + v1 + v2

nnnnnnnnnnnn
v1 + v2 + v3

nnnnnnnnnnnn

P4
i=1 vi

P4
i=1 vi

P4
i=1 vi

P4
i=1 vi

Figure 2: Construction of Edges on a Zonohedron
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The cyclic property holds in a multi-primary display when no primary can be
written as a positive linear combination of any other primaries. From a practical
point of view, this condition means that every primary adds a new chromaticity: no
primary appears as a convex combination of the other primaries, in the chromaticity
diagram. This condition is often satisfied, but not always. In an RGBW system,
for instance, the chromaticity of the white primary can be duplicated by combining
the red, green, and blue primaries. If all primaries are monochromatic, on the other
hand, then their chromaticities are on the boundary of the chromaticity diagram, so
they are automatically cyclic. When the cyclic property holds, the algorithm above
conveniently represents the gamut geometrically.

The gamut can still be found for an arbitrary, possibly non-cyclic set of primaries.
As König et al6 describe, the gamut is the convex hull of all 2N points of the form
given in Expression (8). One can calculate all such points, then find their convex
hull, and then, either manually or with a computer algorithm, determine which of
them are vertices, which pairs of vertices are joined by edges, and which sets of edges
form faces.

2.2 Metamerism

Equation (4) shows that there can be some redundancy, or metamerism, in the
display gamut. Metamerism in the context of display devices occurs when two control
sequences produce the sameXY Z tristimulus values. Figure 3 gives a simple example
of metamerism. Suppose there are four primaries, v1 through v4, as shown in the
figure. They form a square pyramid, whose apex is at the origin. Then one can see
geometrically that

v1 + v3 = v2 + v4, (9)

so the two sides of Equation (9) are metameric representations of the same point in
the gamut of v1 through v4. One could find many other metameric combinations for
this point, such as 1

3
v1 + 2

3
v2 + 1

3
v3 + 2

3
v4.

Metamerism cannot occur when there are only three (non-coplanar) primaries.
XY Z space can be seen as a vector space, in which Equation (4) gives linear combi-
nations of the primaries. When there are only three primaries, they form a basis for
the vector space, so any point can be written as only one linear combination of the
primaries. Equation (4) requires that the coefficients of the combination be between
0 and 1, so the gamut of three primaries is a parallelepiped.

A related concept is an offset parallelepiped. Such a parallelepiped is translated
from the origin (which is the black point) by some vector w, which extends from the
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Figure 3: An Example of Metamerism

origin to one vertex of the parallelepiped. The three edges meeting at that vertex
are given by three vectors, u1,u2, and u3. These three vectors can be seen as having
been translated by w from the origin to the parallelepiped vertex. Every point
within the parallelepiped has a unique representation as w plus a linear combination
of u1,u2, and u3. Figure 1 shows that such offset parallelepipeds occur naturally
when constructing the zonohedral gamut.

In the sequel, u1,u2, and u3 will be primary vectors, and w will be a combina-
tion of primary vectors, of the form given in Expression (8). Formally, define the
parallelepiped Pw,abc to be

Pw,abc =

{
w +

∑
i=a,b,c

αivi

∣∣∣αi ∈ [0, 1]∀i
}
. (10)

Geometrically, the eight vertices of Pw,abc occur when each αi is 0 or 1 in Equation
(10). The parallelepiped Pw,abc is the convex hull of those vertices:

Pw,abc = conv(w,

w + va,w + vb,w + vc,

w + va + vb,w + va + vc,w + vb + vc,

w + va + vb + vc). (11)

As long as the coefficients of va,vb, and vc, in the expression for w, are all 0, there
is no duplication of primaries, and Pw,abc is contained in G.
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We can define a metamerism functionM, fromXY Z space to the set of all control
sequences that result in a particular set (X, Y, Z). Formally,

M(X, Y, Z) = {s ∈ S|T (s) = (X, Y, Z)}, (12)

where T is given in Equation (6). M depends on the choice of primaries, and on
their ordering. M decomposes the set S into equivalence classes of metamers. T
maps each equivalence class to the same (X, Y, Z) values.

3 Zonohedral Control Sequences
The gamut’s zonohedral structure suggests a natural dissection into parallelepipeds.
Once this dissection is performed, a zonohedral control sequence can be defined for
any point in the gamut, by using the parallelepiped containing this point. This
section will present an algorithm for the dissection, and the next section will show
that zonohedral control sequences have desirable properties. In particular, they are
easily extended when more primaries are added.

3.1 Dissecting the Gamut into Parallelepipeds

The following algorithm (Algorithm II) dissects the zonohedral gamut into paral-
lelepipeds :

1. Choose an ordering for the primaries. This ordering is arbitrary, but must be
used consistently. Different orderings can lead to different dissections.

2. Construct a parallelepiped from the primary vectors {v1,v2,v3}. This paral-
lelepiped is actually a zonohedron, which can be denoted Z3. In general, let
Zj denote the zonohedron generated by {v1,v2, . . . ,vj}. The parallelepiped Z3

will be part of the dissection.

3. Loop over Zj, for j = 3, . . . , (N − 1). This step will construct the zonohedron
Zj+1, from Zj and the vector vj+1, as follows:

(a) For each boundary parallelogram B of Zj :

i. By construction, two opposite edges of B are copies of some generator
va. The other two edges are copies of another generator, vb. The
vertices of B are of the form w, w + va, w + vb, and w + va + vb.
Since w is a vertex of Zj, it follows from Expression (8) that w is a
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sum of a subset of the primaries, at full intensity, that generate Zj.
B has two sides; one is outside Zj, and the other is inside.

ii. If the vector vj+1 is on the side of B that faces inside the zonohedron,
do nothing. Otherwise (when vj+1 is facing outward), let vj+1 sweep
out a parallelepiped over B. Add this new parallelepiped to the dissec-
tion. Because it was built on an outside face, the new parallelepiped
does not intersect any of the current parallelepipeds. The new paral-
lelepiped is Pw,abc, where c = j + 1. The sum of full primaries, w, is
the offset point for this parallelepiped.

(b) After looping through all the boundary parallelograms of Zj, the union of
all the previous and new parallelepipeds will be a new zonohedron, Zj+1.
Execute the loop again, using Zj+1 in place of Zj.

4. The zonohedron ZN is the entire color gamut, and the set of all the constructed
parallelepipeds defines the dissection.

While the zonohedral construction in Algorithm I depended on cyclic ordering, Al-
gorithm II does not. Even an RGBW gamut could be dissected by Algorithm II.

As an example, the dissection algorithm can be applied to the zonohedron in
Figure 1. The left side of that figure shows the parallelepiped Z3, constructed from
the first three primaries. Figure 4 applies Algorithm II to build up the zonohedron
on the right of Figure 1, parallelepiped by parallelepiped. In Step 2 of Figure 4,
v4 is added, in the Minkowski sense, to the parallelogram originating at 0, and
bounded by generators v1 and v3. Steps 3 and 4 show two other parallelepipeds,
constructed similarly, that contribute to the dissection. Only parallelepipeds that
are located on the outer sides of bounding parallelograms are included. For example,
the parallelepiped P0,124 would be built on the inner side of the parallelogram given
by 0, v1, and v2, so it is not included. In all, four parallelepipeds go to make up
Z4, shown in an exploded view in Step 5. Since there are only 4 primaries, Z4 is the
entire gamut G, and we get

G = P0,123 ∪ P0,134 ∪ P1,234 ∪ P3,124. (13)

This dissection algorithm could be easily extended to an arbirtrary number of
primaries. Suppose, for example, that an engineer wanted to add a fifth primary.
He would start with the dissection of Z4 shown in Figure 4, and a fifth primary, v5.
Six additional parallelepipeds can be created by sweeping v5 over different outward-
facing surfaces of Z4. Figure 5 shows one of the new parallelepipeds. It is built on the
bounding parallelogram whose edges are copies of v1 and v2, originating at v3 + v4,
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which is a vertex of Z4. The new parallelepiped is P3+4,125, where 3 + 4 is shorthand
for v3 + v4. Other parallelepipeds are constructed similarly on other faces of Z4.
Any point that is already in Z4 remains in its previous parallelepiped. The new
parallelepipeds are just added to the list in Equation 13, extending it to the entire
Z5.

3.2 An Algebraic Interpretation

Apart from its geometric interpretation, the assignment of coefficients αi has an
elegant algebraic interpretation. The parallelepiped dissection gives more weight to
earlier primaries than later primaries. The primary vi, for example, will not be used
to define a color C ∈ G, if C is in Zi−1, the zonohedron generated by the first i− 1
primaries. Even if vi is necessary, its coefficient will be as small as possible, because
the zonohedron spanned by the first i− 1 primaries is as large as possible, and there
is a unique nearest point to C on ZN−1 along the line generated by vi. If i = N,
then, the coefficient αN is given by

αN = min

{
α|C = αvN +

N−1∑
i=1

αivi, for some α, α1, α2, . . . , αN−1

}
. (14)

Once αN is fixed as a component of C, use the same minimizing procedure to define
αN−1 :

αN−1 = min

{
α|C = αNvN + αvN−1 +

N−2∑
i=1

αivi, for some α, α1, α2, . . . , αN−2

}
.(15)

Continue this procedure, counting downward until 1, by which time all coefficients
will have been found. A converse approach, which gives the same result, is to maxi-
mize the early primaries. Define the coefficients by

α1 = max

{
α|C = αv1 +

N∑
i=2

αivi for some α, α2, α3, . . . , αN

}
, (16)

α2 = max

{
α|C = α1v1 + αv2 +

N∑
i=3

αivi for some α, α3, α4, . . . , αN

}
, (17)

and so on, until αN .
These two other algorithms give identical results to Algorithm II, and are concep-

tually simpler and more elegant. They make no reference to zonohedra or geometric
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Figure 4: Dissection of Zonohedron into Parallelepipeds

13 c© 2011



Paul Centore & Michael H. Brill

Figure 5: Extending the Dissection to a Fifth Primary Vector

constructions. It is clear from the defining equations that the resulting coefficients are
unique, and that they depend on the order chosen from the primaries. As presented,
however, it is not at all obvious how the coefficients can be computed efficiently.
The parallelepiped dissection provides a geometric approach that is computationally
undemanding.

4 Properties of Zonohedral Control Sequences
This section shows that zonohedral control sequences have several desirable prop-
erties. They avoid metamerism, are continuous, and, under some mild conditions,
avoid spurious matches. Many other control sequence algorithms3,4,6,7,8 share some
or all of these properties, but extensibility is believed to be unique to the zonohe-
dral algorithm. Extensibility in the context of displays means that further primaries
can be added, without changing the control sequences of the existing gamut. Each
property will be discussed in detail.

4.1 Extensibility

Extensibility in the display context means that additional primaries can be added,
without having to recompute the control sequences for points currently in the gamut.
For example, Figure 5 shows a fifth primary being added to the four-primary gamut
in Figure 4. Using zonohedral control sequences, the current gamut would preserve
its current sequences, but any new points would involve a non-zero coefficient α5.
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Because of this property, a manufacturer could offer a low-end, three-primary, display,
that is compatible with a high-end, six-primary, display, by making the low-end
primaries a subset of the high-end primaries. When using Algorithm II, the primaries
would be ordered so the low-end ones come first. Gamut mapping would be simplified,
so that a multi-primary image could more easily be displayed on either system.

4.2 Avoiding Non-Matches

A metameric non-match occurs, in the notation of Equation (12), when there are
different control sequences, s and t, such that T (s) and T (t) have identical CIE co-
ordinates, but a non-standard observer judges that they do not match. The solution
to this problem is conceptually simple: assign a unique control sequence to each
(X, Y, Z) triple. Formally, define a function A : G → S. Anytime it is desired to
display the color (X, Y, Z) ∈ G, use the control sequence given by A(X, Y, Z) to
determine what combination of primaries to use. A(X, Y, Z) ∈ M(X, Y, Z), so A
specifies which of the many metamers should be displayed. With this method, one
would not use both s and t, so metamerism would never occur.

If there are only three (linearly independent) primaries, then the construction of
A is automatic. Since the three primaries are independent, no combination of any
two of them can make the third, and the gamut is a parallelepiped based at the
origin in XY Z space. The three primaries form a basis in a three-dimensional vector
space, so any vector in the gamut can only be written as a unique linear combination
of the primaries. The set G, as can be seen from Equation (4), consists of linear
combinations of the primaries. Therefore A is uniquely defined as the components
of the primaries needed to sum up to a given (X, Y, Z) triple.

If a color C is in a (possibly offset) parallelepiped, Pw,abc, define A in the natural
way. Subtract the vector w from both C and Pw,abc. Pw,abc−w is now a parallelepiped
at the origin, that is generated by {va,vb,vc}, and contains the vector C−w. Since
the parallelepiped is three-dimensional, and its vector space basis is {va,vb,vc}, the
components of C−w in this basis are unique. Denote them by αa, αb, and αc. Define

A(C) = w + αava + αbvb + αcvc. (18)

Since w is a sum of primaries that are not va,vb, or vc, the right side of Equation
(18) is within the gamut of the primaries. By construction, T (A(C)) = C, so, once
we have chosen Pw,abc, we can use Equation (18) to specify a unique metamer.

The dissection algorithm decomposes the gamut into parallelepipeds. By defin-
ing A on each parallelepiped as in the above paragraph, A becomes a map on the
entire gamut G. Since A is unique on each parallelepiped, A uniquely specifies the
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zonohedral control sequence as the choice of metamer. The uniqueness is sufficient
to avoid non-matches, as desired

4.3 Avoiding Discontinuity

The parallelepiped dissection not only avoids non-matches, but, as this section will
show, it also avoids discontinuity. Suppose that a continuous curve is drawn through
the display gamut. Suppose further that a multi-primary display presents this curve
to a viewer as a scale, much like the “hot” or “aquatic” color scales used in some
graphics programs. Ideally, a viewer should perceive no discontinuity or jumps in
such scales. The display maps gamut colors to control sequences, so the form of these
mappings determines whether discontinuity occurs. Formally, A is a function from
the gamut G, seen as a topological subspace of XY Z space, to the set S of control
sequences, which are points in [0, 1]N . Each component, αi, of a control sequence,
can also be seen as a function from G to [0, 1]. A as a whole is continuous if and only
if each component αi is continuous on G, which we will now show.

By construction, the dissection allows the gamut to be written as a disjoint union:

G = Z3 ∪ (Z4\Z3) ∪ (Z5\Z4) ∪ · · · ∪ (ZN\ZN−1), (19)

where A\B is the set of all elements that are in set A, but not in set B. The gamut
can be compared to an onion, with each Zj\Zj−1 adding a new layer of skin onto the
previous layers. Since vi is not used in assigning control sequences to the zonohedron
generated by the first i− 1 vectors, it follows that αi = 0 everywhere in Zi−1, and so
is continuous in Zi−1. (If i ≤ 3, then αi is already continuous in Z3, so assume i ≥ 4.)
The construction uses the Minkowski sum of vi, and some boundary parallelograms
of Zi−1, to make Zi\Zi−1. Geometrically, the Minkowski sum sweeps out copies of
those parallelograms, along a copy of vi. The sweeping motion is continuous, and
is indexed by vi’s coefficient αi, which varies from 0 to 1. The assignment of αi is
therefore continuous on Zi\Zi−1. Furthermore, when the sweeping begins, at αi = 0,
the parallelograms are on the boundary of Zi−1, where αi is always 0. Therefore, αi

moves continuously from Zi−1 to Zi, and so is continuous on all Zi.
As the construction proceeds to Zi+1, additional points will be added to Zi.

Zi+1\Zi is the Cartesian product of αi+1vi+1, for 0 < αi+1 ≤ 1, and a set, σ, of
some (but not all) bounding parallelograms of Zi. Since σ is a subset of Zi, and αi

is continuous on Zi, it follows that αi is continuous on σ. By the construction in
Figure 4, σ is swept along vi+1, to construct some new parallelepipeds, in Zi+1\Zi.
Since the translated vector vi+1 is a continuous set, and the new parallelepipeds
are the Cartesian product of vi+1 and σ, it follows that αi is continuous on all the
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new parallelepipeds. The union of the parallelepipeds constitutes Zi+1\Zi, so αi is
continuous on all Zi+1\Zi. By the construction, the limit of αi as it approaches Zi on
a path through Zi+1\Zi, equals its value on the boundary of Zi, so αi is continuous
on all Zi+1. Continue this argument inductively, to show that αi is continuous on
Zi+2, Zi+3, and so on until ZN , which equals G.

The preceding argument has shown that the parallelepiped dissection guarantees
color continuity, in a mathematical sense, on a multi-primary display. Unfortunately,
it is not always clear how to go from a mathematical property, like continuity, to
a perceived quality, like color smoothness. Other methods, such as Kanazawa’s
spherical average,4 give coefficient functions that are not only continuous, but also
have some differentiability. Using experiments involving human subjects, Murakumi
et al9 compare different control sequence assignment methods. Though they found
that functions with some differentiability appear smoother than functions that are
just continuous, it is still an open question as to how gradually coefficient functions
should change, to produce acceptably smooth color scales for observers.

4.4 Avoiding Spurious Matches

Spurious matching, in which two colors that are different to the standard observer
appear identical to an actual observer, is also possible. For example, a yellowed
ocular lens might cause matching of two colors with different XY Z coordinates. In
the context of our tiled parallelepipeds, a filter can cause spurious matches by making
a vertex of one parallelepiped traverse one of the faces of the same parallelepiped
and land at another point in which there is already a control sequence assigned. Brill
and Larimer7,10 give an example of such traversal, and show that the following two
conditions are sufficient to avoid such spurious matches:

1. Using the CIE color-matching functions, the chromaticity curve (x(λ), y(λ))
traced out in λ (i.e., the spectrum locus) is convex and well-ordered in wave-
length.

2. The spectra of any triplet of primaries, {p1(λ), p2(λ), p3(λ)}, traces out in λ a
curve (p1(λ), p2(λ))/(p1(λ)+p2(λ)+p3(λ)) that is also convex and well-ordered
in wavelength.

Many authors, e.g. West and Brill,11 have noted that the first point is very nearly
true. Brill and Larimer7 refer to the criterion in the second point as the Binet-Cauchy
criterion.

Any triad of primary spectra either satisfies the Binet-Cauchy criterion or not,
regardless of how control sequences are assigned. However, the criterion significantly
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affects whether a given assignment algorithm avoids spurious matches. Consider
the matrix-switching algorithm of Ajito et al,3 which dissects the XY Z gamut into
quadrangular pyramids. Each pyramid’s vertices comprise the black point b and
four vertices qj, j = 1 . . . 4, of a parallelogram on the boundary of the display gamut.
Each of the pyramids is spanned by three control variables: q1 − b,q2 − q1, and
q3 − q1. Note that these spanning vectors are composite primaries, each being the
sum of fully-activated single-primary vectors.

To see the effect of using simple versus composite primaries to address a color,
we now pose an example. Suppose that all the simple primaries had spectra that
were Gaussian in wavelength with the same width (given by a standard deviation,
σ), but different peak wavelengths, denoted µi. Consider any triad of the Gaussian
curves:

pi(λ) = Ai exp

[
−1

2

(
λ− µi

σ

)2
]
, i = 1, 2, 3. (20)

As λ varies, the vector (p1(λ), p2(λ), p3(λ)) traces out a curve in three-dimensional
space. Construct a chromaticity analogue of this curve by centrally projecting the
coordinates to the plane p3 = 1. The chromaticity coordinates will be (P1, P2) , where

P1(λ) =
p1(λ)

p3(λ)
, (21)

P2(λ) =
p2(λ)

p3(λ)
. (22)

Substituting Equation (20) into Equations (21) and (22) gives

Pi(λ) =
Ai

A3

exp

[
1

2σ2

[
µ2

3 − µ2
i + 2λ(µi − µ3)

]]
, i = 1, 2. (23)

Eliminating λ from the two equations in (23) reveals P2 to be a power function of P1,
so the resulting curve of P2 versus P1 is convex. Map the coordinate system (P1, P2)
into the coordinates used in point 2, as follows:

(p1, p2)

p1 + p2 + p3

=
(P1, P2)

P1 + P2 + 1
. (24)

This mapping is a projective transformation, which sends straight lines into straight
lines and hence preserves the convexity of convex curves. The spectrum locus of
the triad in Expression (20) is therefore convex and well-ordered in wavelength, as
required by point 2.
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Although the spectrum locus of an arbitrary triad of primary curves is convex,
sums of such curves, which will have multiple maxima in wavelength, can give triads
whose spectrum locus will be far from convex. Hence the composite primaries used by
Ajito et al3 to span their quadrangular pyramids will be more susceptible to spurious
matches than if the spanning primaries were chosen to be simple. The same can
be said for the composite primaries in the algorithm of Brill and Larimer.7,10 That
algorithm tiles the available gamut with tetrahedra, many of whose spanning vectors
comprise sums of fully-activated primaries. The algorithm works for monochromatic
primaries because the convexity criterion applies only to the wavelength support of
the primaries. However, when the primary spectra are Gaussians of equal width,
the composite primaries will generate non-convex spectrum loci. Furthermore, the
algorithm of Brill and Larimer does not exhaust the three-dimensional gamut of the
display in XY Z space, and this is an additional problem.

In contrast to these methods, the current algorithm uses only one primary for
each of the three spanning vectors of any offset parallelepiped. Therefore, if the
simple primaries are the above-mentioned Gaussians, the spanning primaries of each
offset parallelepiped will have a convex spectrum locus, the Binet-Cauchy criterion
will be satisfied, and spurious color matches will be avoided. The above discussion
used equal-spread Gaussians as primary spectra only to suggest plausibility. A more
rigorous discussion (one that makes precise the likelihood of satisfying Binet-Cauchy
and gives a best dissection for a given set of primaries) would be a fitting subject of
a future investigation.

5 Comparison with Previous Work
Several algorithms have already been proposed, for addressing multi-primary dis-
plays. Apart from extensibility, most desirable properties of zonohedral control se-
quences occur in previous algorithms.

Like the current algorithm, Ajito et al’s matrix switching technique3 dissects
the color gamut into a disjoint union of discrete sets. Rather than parallelepipeds,
their dissection consists of pyramids whose apex is at the origin, and whose base is
one bounding parallelogram. A different color assignment matrix is used on each
pyramid, assuring uniqueness so as to avoid non-matches.

Matrix switching and zonohedral sequencing are both mathematically continuous,
but other methods were designed to maximize perceptual smoothness. König et al,6
for example, noted that matrix switching caused visible artifacts in images when their
colors crossed from pyramid to pyramid. To remedy this lack of smoothness, several
averaging methods were suggested. Motomura8 produced the LIQUID method, which
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interpolates over three colors of the same luminance as the color of interest. König6

used a center of gravity construction, combined with a local choice of three primaries.
Kanazawa4 used a spherical average around the color of interest: each ray starting
at the color of interest intersects the boundary of the gamut. Averaging methods
insure uniqueness and improve smoothness, but have some drawbacks. First, they
can be computationally demanding. Kanazawa’s spherical average, for examples,
requires calculating many intersections between lines and the display gamut, finding
the control sequences at the intersections, and then evaluating a surface integral.
Second, they can be difficult to visualize and therefore unintuitive to work with.

Brill and Larimer7,10 approached the problem of metamerism in multi-primary
displays in the context of the chromaticity diagram. To dissect the gamut into
local XY Z regions and primary triplets, they used a set of parallelepipeds (with
spanning vectors being either primaries or composite primaries) that shared a vertex
at the origin (0, 0, 0). These parallelepipeds, which appear as triangles in (x, y)
chromaticity space, did not cover the full three-dimensional gamut of the N-primary
system (generated by Algorithm I). The reason was that each triad of composite
primaries was constrained by maximum activation of any of the possible common
ingredients (R, Y,G, etc.).

The current paper abandons composite primaries (with common simple-primary
ingredients). Instead, only simple primaries can be used in a region of XY Z space.
In the present paper, the elementary regions in XY Z space are parallelepipeds,
each spanned by three primaries from a common black-point offset, that represents
the sum of a number of other fully-activated primaries. Given a candidate triplet
(X, Y, Z), we first find the elementary region to which it belongs, and then find
the primary settings in that region that will render the triplet. This construction
completes Brill and Larimer’s, by working with the zonohedral color gamut directly,
rather than with the chromaticity diagram.

6 Conclusion
This paper has presented an algorithm for efficiently finding the bounding vertices,
edges, and faces of the tristimulus color gamut of a multi-primary display. A sec-
ond, zonohedral, algorithm has also been presented, for dissecting that gamut into
parallelepipeds. The dissection algorithm provides a unique address for every gamut
point, with continuous control sequence transitions between points. In addition, it
insures that current control sequences can be preserved when the gamut is extended
by adding more primaries. The zonohedral algorithm is believed to be the first to
possess this extensibility property. In addition, the algorithm’s unique addressing
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avoids non-matches, in which two metameric control sequences appear different to a
viewer. The assignment of control sequences is mathematically continuous in each
primary’s coefficient. If all the primaries are monochromatic, or narrow functions
with a single peak, then an interposed filter or observer change will not result in
spurious matches. More generally, any primaries that satisfy the Binet-Cauchy cri-
terion will avoid spurious matches. Less strict rules than the Binet-Cauchy criterion
might offer more practical alternatives that existing displays can meet. Finding such
good-enough rules will be a future effort.
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