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Abstract

A control sequence gives the intensities of the primaries for a pixel in a display.
A multi-primary display has four or more primaries, so that multiple control se-
quences can sometimes produce the same colour. Different primaries likely consume
different amounts of energy; furthermore, the energy consumption can be a compli-
cated function. A minimal-energy control sequence for a target colour produces that
colour with as little energy as possible. This paper shows that such minimal-energy
sequences take a simple geometric form when each primary’s energy function is lin-
ear. The display gamut, in CIE XYZ space, can be dissected into parallelepipeds.
The originating vertex of each parallelepiped is the sum of a set of primaries at full
intensity. Each edge of a parallelepiped is the translation of one primary. A colour
with XYZ coordinates in a certain parallelepiped is a unique linear combination of the
primaries in the originating vertex, and the three edge primaries. This paper proves
that there exists a dissection such that these linear combinations are minimal-energy
control sequences. In the generic case, this dissection is unique. An algorithm for a
minimal-energy dissection is presented, along with an example.

Keywords — multi-primary, display, metamerism, energy, control sequence, gamut

1 Introduction
A display device such as a computer monitor combines a limited set of primaries to
produce a wide gamut of colours. Many display devices use only three primaries (typically
a red, green, and blue), but multi-primary devices use four or more. While additional
primaries increase the gamut, they also introduce metamerism, in which two different
combinations of primaries produce the same colour output. A multi-primary designer
must therefore choose one combination from many. Various schemes1,2,3 with various
goals have been proposed for these choices. This paper was motivated by the goal of
determining minimal-energy combinations for multi-primary displays with limited battery
life or power availability.
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Figure 1: Four-Primary Gamut in XY Z Space

The general problem is difficult because the energy consumption function varies widely
over different displays. Activating the red primary at full intensity, for instance, might
require more than twice as much power as activating it at half intensity—or require
no more power at all. In some displays, a primary draws power even when producing
nothing visible. Since the general problem is likely too variable to be tractable, this paper
addresses the special case in which each primary’s intensity is a linear function of power.
Furthermore, additivity is assumed: the power consumed by a combination of primaries
is the sum of the powers consumed by the individual primaries.

In the linear case, activating a primary at full intensity would always require twice
the power of activating it at half intensity. Different primaries, however, could require
different amounts of power for full intensity, and their luminous efficiencies at full intensity
could be different. These complications make even the linear case a sufficiently challenging
problem. It is hoped that this paper’s linear results will be a stepping stone to results for
other, non-linear, displays.

The linear case, fortunately, has a simple geometric solution. The minimal-energy
results for linear multi-primary displays can best be envisioned in three-dimensional colour
space, indexed by XY Z coordinates. The colour gamut G of a display is the set of all
colours which can be produced by that display. In the displays of interest in this paper,
linear power response and additivity make the XY Z gamut into a zonohedron.3 Figure
1 shows an example of a gamut when there are four primaries. The gamut is a convex
polytope, and its faces (in the generic case) are all parallelograms. A node is the colour
in XY Z space that is produced when a subset of the primaries is fully activated, and all
other primaries are fully deactivated. Every vertex of the zonohedron is a node, but many
nodes are also located inside the zonohedron.

Any XY Z point in the zonohedron can be produced by activating each of the pri-
maries with a certain power. Scale the power for each primary so that its maximum
value is 1. The set of scaled powers, one for each primary in some fixed order, is called
a control sequence. A multi-primary display (i.e. one with four or more primaries) ex-
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hibits metamerism: many different control sequences can produce the same XY Z colour.
Though they produce the same colour, the control sequences can use more or less energy,
depending on the primaries’ power requirements. For energy-sensitive applications, an
engineer would like to assign a control sequence that not only produces a specified colour,
but also uses minimal energy.

The central result of this paper is that the minimal-energy control sequences for a
linear display correspond to a parallelepiped dissection of the gamut in XY Z space. This
dissection consists of disjoint parallelepipeds whose union is the entire gamut. Figure 2 is
a dissection of Figure 1; it is an exploded view, in which the parallelepipeds are shrunken
and spread out for clarity. Furthermore, the vertices of each parallelepiped are nodes in
the gamut.

Each parallelepiped has an initial vertex and a final vertex, with corresponding initial
and final nodes. The initial node is a sum of fully-activated primaries; its control sequence
consists entirely of 0’s and 1’s, where the 1’s correspond to primaries at full intensity. The
control sequence for the final node similarly consists of 0’s and 1’s. Every 1 in the initial
control sequence is also a 1 in the final control sequence, but the final sequence has three
additional 1’s that do not appear in the initial sequence. Every 0 in the final sequence is
also a 0 in the initial sequence. The final and initial sequences therefore differ in three
coefficients. The three edges of the parallelepiped that originate at the initial vertex are
translations of the primaries, at full intensity, that correspond to those coefficients. These
three edges form a vector space basis for the parallelepiped. As the three coefficients vary
independently between 0 and 1, they can be used naturally as vector coordinates for the
three-dimensional parallelepiped, with respect to that basis.

The dissection provides a map from the colour gamut to the set of control sequences.
To produce a certain XY Z colour, find the parallelepiped in the dissection that contains
those XY Z coordinates. The minimal-energy control sequence for that colour will have
1’s where the parallelepiped’s initial sequence has 1’s, and 0’s where the final sequence
has 0’s. The remaining three coefficients will be the coordinates of the XY Z point within
the parallelepiped.

The paper’s outline is as follows. First, linear algebra is used to rigorously formulate
the minimal-energy problem for multi-primary displays. Then nodes and gamut dissec-
tions are also formulated rigorously. A technical concept that arises is genericity, in which
multiple minimal-energy dissections exist but are unstable; a negligible adjustment of the
energy function, smaller than measurement error, will produce a unique dissection. After
the formulation, two propositions are proved, from which the existence of a dissection can
be mathematically derived. The derivation leads to a dissection algorithm, from which
minimal-energy sequences can be found. Finally, an example is given, using four primaries
and a simple, hypothetical energy function.

2 Mathematical Formulation

Considerable mathematical machinery is needed to rigorously discuss multi-primary dis-
plays and linear energy consumption functions. Linear algebra provides a natural setting,
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Figure 2: Parallelepipeds in Minimizing Dissection of Gamut

so this section first uses vector spaces and linear transformations to define the relevant
terms. Next, we discuss geometric dissections of the display gamut in three-dimensional
colour space. A final technical concept that is discussed is genericity.

2.1 The Colour Transformation C

In a linear display, a primary is a light source of fixed relative spectral density, whose
intensity can vary from 0 to some maximum, which can be scaled to value 1. The colours
produced by primaries and their combinations can be expressed in the XY Z coordinates
developed by the Commission Internationale de l’Éclairage (CIE).4 Colours in this system
are vectors in the positive octant of R3. The set of all possible combinations of primaries
forms a solid, called the display gamut, in the positive octant. Formally, suppose that N
primaries are available. At full intensity, the colour Ti produced by the ith primary is

Ti = [Xi, Yi, Zi] . (1)

The display gamut, G, consists of all possible combinations of primaries, at all intensities
from 0 to 1:

G =

{
N∑
i=1

αiTi

∣∣∣αi ∈ [0, 1] ∀i

}
. (2)

G is a subset of XY Z space. Geometrically, G is a zonohedron, that can be dissected
into a set of parallelepipeds.3,5

A sequence of N coefficients αi, all of which are between 0 and 1, is called a control
sequence. The set of all control sequences can be seen as the unit hypercube, U = [0, 1]N,
in the vector space RN . The colour generated by a control sequence can be expressed by
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the linear transformation, C, from U to XY Z space:

C([α1, α2, . . . , αN ]) =
N∑
i=1

αiTi. (3)

The image of U under C is the entire colour gamut G of the display device.
The kernel6 of C, denoted kerC, is the set of all vectors α ∈ RN , such that

C (α) = [0, 0, 0] . (4)

Wyszecki7 introduced the term metameric blacks as a synonym for kerC. The vector
α = 0 is in kerC. The image of a non-zero vector for which every αi is non-negative,
however, must consist of a positive X, Y, or Z, so such a vector can never be in kerC.
Since all the components of any vector in U are non-negative, U and kerC only intersect
in the zero vector. A non-zero vector that is in kerC must therefore contain at least one
negative component. Since a negative component has no physical meaning, the metameric
blacks are imaginary. Like the CIE primaries,4 however, they are still meaningful for
mathematical operations.

It is known from linear algebra6 that kerC is a vector subspace of RN . On practical
grounds, the gamut G for any non-monochromatic display device would be expected to
be three-dimensional. Therefore the rank of the transformation C is 3. The dimension of
the kernel, or the nullity, of C is therefore N−3. If there were four primaries, for example,
then kerC would be a 1-dimensional subspace of R4, so it would be a line through the
origin.

In a multi-primary device, where N > 3, the transformation C is not injective: a given
colour might be produced by many different metameric control sequences. Suppose there
is a target colour T, given by some XY Z triple in G. Define the pre-image of T, denoted
C−1(T ), to be the set of all sequences that satisfy the first condition:

C−1(T ) = {β ∈ RN |C(β) = T}. (5)

An important result from linear algebra6 is that

C−1(T ) = α + kerC, (6)

when α is any vector such that C(α) = T. Geometrically, C−1(T ) is an affine subspace,
that is, a vector subspace which has been shifted by adding the same vector to every
vector in the subspace. Since C−1(T ) is a parallel translation of kerC, it maintains the
same topological dimension of N − 3. As long as T is not [0, 0, 0], C−1(T ) will not contain
the origin. Furthermore, C−1(T ) will intersect the unit hypercube U in points besides the
origin.

2.2 The Energy Functional E

The ith primary vi requires a certain energy, E(vi), to remain at full intensity for a set
time period. For reduced intensity, presumably less energy is needed. The general form
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of energy as a function of intensity, though presumably monotonic, can be complicated.
This paper will deal only with the case of a linear energy function, i.e., one in which the
energy required for each primary is proportional to its intensity. Only half of E(vi), for
example, would be required to maintain vi at half its full intensity. Like C, the energy
function E is then a linear transformation (in fact, a linear functional) on the vector space
RN of control sequences:

E([α1, α2, . . . , αN ]) =
N∑
i=1

αiE(vi). (7)

This definition also implies that the primaries’ power consumptions are independent and
additive: the total power required by a combination of primaries is the sum of the powers
required by the individual primaries.

Although the colours produced by metameric sequences appear identical to a standard
observer, their spectral distributions are different, and likely require different amounts of
energy. A minimal-energy control sequence, α = [α1, α2, . . . , αN ] , for a target colour T,
satisfies

E(α) is minimized, (8)

subject to the conditions

C(α) = T, (9)
0 ≤ αi ≤ 1,∀i. (10)

Standard linear programming8 can find such sequences.
The programming problem also has a geometric interpretation that will be useful later.

Any control sequence that produces the target colour T must be contained in C−1(T ). All
control sequences are contained in the unit hypercube U. Therefore, any control sequence
that produces T must be in C−1(T ) ∩ U. Both C−1(T ) and U are convex sets, so their
intersection, which will be denoted I, is also a convex set. In fact, since U is a convex
polytope, and C−1(T ) is an affine subspace, the set I is also a convex polytope. Any
minimal-energy control sequence for T must be in I. When restricted to I, the linear
functional E gives the energy consumed by any control sequence that produces T. The
problem of finding a minimal-energy sequence is therefore the problem of minimizing a
linear functional defined on a convex polytope.

A further useful map can be defined when minimal-energy control sequences are
unique: the function σ from G to U, where σ(T ) is the unique minimal-energy con-
trol sequence that produces the target colour T. Geometrically, σ(T ) is the point on I
at which E takes its minimum value. Since the map from target colours such as T to
convex polytopes such as I is the pre-image of a linear function (and an intersection), it
is continuous in the Hausdorff metric on convex sets. The assignment of the minimum
point for the continuous function E to polytopes such as I is itself continuous. σ can
be viewed as the composition of these two continuous assignments, so σ must also be
a continuous function. Use Σ to denote the image of σ; in notation, Σ = σ(G). Since
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C(σ(T )) = T for any T, therefore the inverse of σ is C|Σ, which is also continuous. σ is
therefore a homeomorphism, so G and Σ must have the same dimension, implying that
Σ is a three-dimensional subset of U. This fact will be useful later on, when studying
coordinate forms for minimal-energy sequences.

While conclusions about dimension are helpful, this paper will show that minimal-
energy sequences have considerably more structure. In fact, they correspond to a simple
geometric dissection of the three-dimensional gamut.

2.3 Parallelepiped Dissection

This paper shows that the minimal-energy control sequences that satisfy the programming
problem in Equations (8) through (10) have a simple geometric form for linear multi-
primary displays. The form involves dissecting the display gamut G, which is a polyhedron
in three-dimensional colour space, into parallelepipeds. In such a dissection, the gamut is
expressed as the union of parallelepipeds; any two parallelepipeds are disjoint, excepting
a possible shared boundary when the parallelepipeds are adjacent.

Each vertex of each parallelepiped is produced by a node, that is, the sum of a set
S of primaries: each primary in S is at full intensity; each primary outside S is at zero
intensity. S can equivalently be thought of as a subset of the indices from 1 to N. The
image of the node is the colour T given by

T =
∑
i∈S

C(vi). (11)

The control sequence for any node consists entirely of 0’s and 1’s. Every vertex of the
gamut is a node,9 but nodes can also be inside the gamut.

Each parallelepiped has an originating vertex (vO) and three generating vectors (va,
vb, and vc). All three generating vectors are primary vectors; the originating vertex is
a sum of a set S of full-intensity primaries. The parallelepiped consists of all colours
produced by control sequences of the form

vO +
∑

i∈{a,b,c}

αivi, (12)

where 0 ≤ αi ≤ 1, for all i. Formally, denote the parallelepiped by the notation

PS,abc =

∑
i∈S

vi +

 ∑
i∈{a,b,c}

αivi

∣∣∣αi ∈ [0, 1]∀i

 . (13)

The final vertex, vF, of the parallelepiped is given by

vF = vO + va + vb + vc. (14)

If a parallelepiped’s initial vertex and three generating vectors are specified, then each
point in that parallelepiped has a unique control sequence in the form given by Equation
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(12). Algebraically, the three generator vectors can be viewed as a vector space basis for
the parallelepiped, and the αi’s are the unique coefficients with respect to that basis. The
eight vertices of PS,abc occur when each αi is 0 or 1 in Equation (13). A parallelepiped
will be called a minimal parallelepiped if all the control sequences it defines are minimal-
energy. A minimal-energy parallelepiped dissection is a dissection consisting entirely of
minimal-energy parallelepipeds.

In a parallelepiped dissection, each gamut point is either in just one parallelepiped,
or on the shared boundary of adjacent parallelepipeds. A gamut point in just one paral-
lelepiped has a unique control sequence in terms of the vertex and generating vectors of
that parallelepiped. A gamut point on multiple parallelepiped boundaries has the same
control sequence, regardless of which parallelepiped is used to represent it. Rather than
having three entries strictly between 0 and 1, gamut points on parallelepiped boundaries
have two or fewer entries strictly between 0 and 1. Thus they can be reached from either
parallelepiped. Whether inside a parallelepiped or on its boundary, then, a dissection
assigns a unique control sequence to each colour in the gamut.

2.4 Genericity

It will be shown later that a minimal-energy dissection exists, but there is still the pos-
sibility that that dissection is not unique. The concept of genericity allows us to adjust
the parameters, by an amount that is negligible in practice, so that there is a unique
minimal-energy dissection.

A property is generic for a set if a dense, open subset possesses that property. As
a consequence, any non-generic case can be modified, by arbitrarily small parameter
adjustments, to produce a generic case. The property of being in general position, for
example, is generic in the set of N -tuples of vectors. An N -tuple of vectors is in general
position if any three of its N vectors are linearly independent. This property is generic
because any set of three linearly dependent vectors can be made independent, by adjusting
one vector coordinate by an amount less than any small ε. From a practical point of view,
the vectors’ coordinates are only known to within some ε, so the adjustment is too small
to be measured. As a result, there is no loss of generality in assuming that the primaries
are in general position. If needed, we will apply such adjustments to the energy functional
E, to insure that the minimal-energy dissection is unique.

3 Mathematical Derivations

The definitions in the previous section will be used for the derivations in the current sec-
tion. Equations (8) through (10) formalize the minimal-energy control sequence problem
in linear programming terms. Although linear programming can readily find a minimal
sequence for any particular T, we will be more interested in deriving conclusions about the
general form of minimal-energy sequences. In particular, we will prove the mathematical
theorem that a minimal-energy parallelepiped dissection always exists. The uniqueness
of a minimal dissection is a generic property. An example will be given of a special case
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where the dissection is not unique. but an arbitrarily small adjustment to the energy
functional makes the dissection unique.

Two propositions will be proven, from which the dissection theorem follows. First,
all but at most three coefficients of a minimal-energy sequence can be set to either 0 or
1. Second, any other sequence, with the same set of 0’s and 1’s as a minimal-energy
sequence, is also minimal-energy. The three other coefficients can vary freely, filling out
a parallelepiped, and all control sequences created in this way will be minimal-energy.
The initial vertex of the parallelepiped will be the sum of a set S of primaries, all at full
intensity, so it will be a node. The final vertex, and in fact all the vertices, will be nodes,
too. The derivations imply that the gamut can be dissected into parallelepipeds, such
that all the colours in one parallelepiped have minimal-energy control sequences with 0’s
and 1’s for the all but the same three coefficients.

3.1 First Proposition

Lemma. Suppose that F is a linear functional on a vector space V, and that L is an
affine line in V (i.e. L is a translation of a one-dimensional subspace). Then either F
is constant when restricted to L, or F is always increasing in one direction along L, and
decreasing in the opposite direction.

Proof. F can be viewed as a differentiable function from Rm to R, where m is the
dimension of V. L can be viewed as generated by a unit vector v. Since F is linear,
the directional derivative of F in the direction v is the same at any point on L. If the
directional derivative is 0, then F is constant on L, which is the first alternative in the
lemma’s statement. If the directional derivative is not zero, then it is either negative or
positive. If negative, then F is always decreasing along L in the direction given by v,
and increasing in the opposite direction−v. If positive, then F is always increasing in the
direction v, and decreasing in the opposite direction. Either result satisfies the second
alternative in the lemma’s statement. �

Proposition 1. Suppose there is some colour T, in the gamut G, for which we have found
a minimal-energy control sequence, α. In other words, C(α) = T, and E(α) ≤ E(β), for
any other sequence β, such that C(β) = T. Then all but at most three of the coefficients
of α can be chosen to be either 0 or 1.

Proof. Assume, by way of contradiction, that four or more coefficients, αi through αn,
are strictly between 0 and 1. If needed, reorder the primaries so that

α = [α1, α2, α3, . . . , αn, 1, 1, . . . , 1, 0, 0, 0, . . . , 0] , (15)

where the number of 1’s and 0’s are chosen appropriately, and n > 3.
We have seen that α is in the set I, which is the intersection of C−1(T ) and U. The

energy functional E takes on various values over I, but the lemma restricts its behavior
along affine lines in I. For each i from 1 through n, construct the line Li that contains α,
and extends indefinitely along both −vi and +vi. Each point on Li has the same form as
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Equation (15), except that the coordinate αi will be replaced by some βi. The span of the
n lines Li is an affine subspace of dimension n, that contains α. C−1(T ) is also an affine
subspace, of dimension N − 3, that contains α. Since n > 3, the intersection J of these
two subspaces must have dimension at least 1, so J contains at least one line L, which
itself contains α. Since L is a subset of J, which is a subset of C−1(T ), it follow that C
maps every point in L to T.

From the lemma, it follows that E decreases (or at least stays at the same value),
as one moves away from α, in one of the directions along L. To reduce E as much as
possible, keep moving in that direction until the boundary of U is reached, at some point
γ, which occurs when one of the βi’s becomes 0 or 1. Now E(γ) ≤ E(α), and γ has at
least one more 0 or 1 than the expression for α in Equation (15). Furthermore, C(γ) = T,
so we have found a control sequence that has one less interior coordinate than α, and also
requires no more energy.

Repeat the above argument with γ instead of α. We can then produce a γ with n− 2
coefficients strictly inside [0, 1], a γ with n− 3 such coefficients, and so on. The process
will end when the dimension of the span of the Li’s is 3 or less, at which time there is
no longer guaranteed to be a non-empty intersection with C−1(T ), which has dimension
N − 3. When the dimension of the span is 3, however, n is also 3. In that case Equation
(15) has no more than three entries which are not 0 or 1, proving the proposition. �

3.2 Second Proposition

Proposition 2. Suppose that a control sequence α is a minimal-energy control sequence
for some target colour Tα in the gamut G, and that α has the form

α = [α1, α2, α3, 1, 1, . . . , 1, 0, 0, 0, . . . , 0] , (16)

where α1, α2, and α3 are all strictly between 0 and 1. (Proposition 1 implies that this
form is the rule rather than the exception.) Then any control sequence β of the form

β = [β1, β2, β3, 1, 1, . . . , 1, 0, 0, 0, . . . , 0] , (17)

where β1, β2, and β3 are all strictly between 0 and 1, is also a minimal-energy control
sequence.

Proof. A linear functional such as E can be characterized by its behavior in all possible
directions in its vector space domain. Let kδ denote a vector δ, multiplied by a positive
constant k. Then kδ defines a direction in the vector space: as long as k is positive, even
if it is arbitrarily large or small, every kδ is in the same direction. The direction kδ
can originate at any point in the vector space. As k increases, according to the lemma,
the linear functional E, evaluated along kδ, either always increases, always decreases, or
always maintains the same value. Thus it is only necessary to test E with an arbitrarily
small k to conclude that E increases along kδ.

The points in the vector space RN represent different control sequences. The sequence
α is a minimal-energy sequence, so E takes on a minimum value at α, when restricted to
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the convex set Iα = C−1(Tα)∩U. A direction kδα that originates at α and extends into Iα
will be called an interior direction. Since α minimizes E, it follows that E must increase
(or at least maintain the same value) along every interior direction. In fact, this criterion
is reversible: if E increases (or maintains the same value) along every interior direction
originating at α, then α must be a minimal-energy sequence. This characterization of
minima also applies to β. β is a minimal sequence if E increases along every kδβ that
extends into Iβ = C−1(Tβ) ∩ U, where Tβ is the colour produced by the control sequence
β.

To show that β is a minimal-energy sequence, we will identify every interior direction
originating at β, and show that E increases in each of those directions. In fact, we will
show that the interior directions that originate at β are identical to the interior directions
that originate at α. Since α is minimal, E must increase in each of those directions, and
the result follows. The argument will use Proposition 1, which says that a minimal-energy
sequence contains many 0’s and 1’s. (A loose geometric interpretation is that a minimal-
energy sequence is on the boundary of its corresponding I.) If a component is 0, then
every interior direction must have a positive entry for that component; if a component is
1, a negative entry is necessary. The large number of 0’s and 1’s in α therefore limits the
set of interior directions.

A direction kδβ is an interior direction at β if β + kδβ is inside Iβ for a sufficiently
small k. Since U and C−1(Tβ) both contain Iβ, it follows that each component βi + kδβi
must satisfy

0 ≤ βi + kδβi ≤ 1,∀i, (18)

and that

C(kδβ) = 0. (19)

Thus δβ is in the kernel of C. The direction δα (which is just δ translated to α) is still in
the kernel of C, so C−1(Tα) and C−1(Tβ) consist of the same directions.

We will similarly show that there is a one-to-one correspondence between the interior
directions from β into U, and the interior directions from α into U. Add and subtract the
coefficients of α in Equation (18):

0 ≤ (βi − αi) + αi + kδβi ≤ 1,∀i. (20)

The direction kδ can be shifted to any originating point, so Equation (20) is equivalent
to

0 ≤ (βi − αi) + αi + kδαi ≤ 1,∀i. (21)

From the statement of the proposition, it follows that

β −α = (β1 − α1, β2 − α2, β3 − α3, 0, 0, . . . , 0) , (22)

so Equation (21) reduces to

0 ≤ αi + kδαi ≤ 1, for i = 4 . . . N. (23)
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Since α has been assumed to be minimal, there is a small enough k so that Equation (23)
holds. Therefore, the last N − 3 components satisfy Equation (18).

We will now show that the first three components also satisfy Equation (18). The first
three components of α and β are strictly between 0 and 1, so, regardless of δ, there exists
a small enough k to simultaneously insure

0 ≤ αi + kδαi ≤ 1, for i = 1, 2, 3, and (24)
0 ≤ βi + kδβi ≤ 1, for i = 1, 2, 3. (25)

Thus every interior direction from α into U is also an interior direction from β into U.
Since C−1(Tα) and C−1(Tβ) also consist of the same directions, the interior directions

from α into Iα, and from β into Iβ, are therefore identical. Since E increases or decreases
along a direction, regardless of where that direction originates, and since E increases along
every interior direction from α into Iα, it follows that E increases along every interior
direction from β into Iβ. This statement is equivalent to saying that β is a minimal-energy
control sequence, as was to be shown. �

3.3 Parallelepiped Dissection Theorem

Parallelepiped Dissection Theorem. Assume that there is a unique minimal-energy
control sequence for each colour in the gamut. Then there exists a unique minimal-energy
parallelepiped dissection for the gamut, and all the parallelepiped vertices are nodes.
Proof. To begin with, we will prove the technical condition that there exists a target
colour T whose minimal-energy sequence has the form given in Equation (16), i.e. T
contains exactly three entries that are not 0 or 1. We need such a T so that we can
apply Proposition 2. To see that such a T exists, use the previously shown result that Σ,
the subset of U consisting of minimal-energy sequences, has dimension three when such
sequences are unique. Within Σ, then, there are at three degrees of freedom, so one could
adjust three entries of a minimal-energy sequence (i.e. an element of Σ) by an arbitrarily
small amount, and still remain in Σ. Thus, by starting with any minimal-energy sequence,
we can move to a nearby sequence τ that has at least three entries that are not 0 or 1.
Let T be C(τ).

Next, construct a minimal-energy parallelepiped around such a target colour T. By
the theorem’s assumptions, the minimal-energy control sequence α such that C(α) = T
is unique. By Proposition 2, any control sequences β that satisfy Equation (17) are
also minimal-energy, and, by the theorem’s assumptions, are unique. Geometrically, the
control sequences β form a parallelepiped in XY Z space. The originating vertex (vO)
of the parallelepiped is the node given by summing up all the primaries represented by
a 1 in Equation (17). Equivalently, those primaries are all displayed at full intensity, as
shown in Equation (11). Use S to denote the set consisting of indices of these primaries.
The first three primaries in Equation (17) will be denoted va, vb, and vc, and can be
displayed at any three intensities between 0 and 1. The remaining primaries are not used
at all; their intensities are the 0’s in Equation (17). In accordance with Equation (13),
the parallelepiped as a whole is denoted PS,abc. By Proposition 2, any control sequence
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generated by Equation (13) is of minimal energy. PS,abc is therefore a minimal-energy
parallelepiped that contains T.

Now choose another colour outside that parallelepiped, insuring that its minimal-
energy sequence is of the form in Equation (16), and construct a second minimal-energy
parallelepiped. Continue with a third point, outside both parallelepipeds, construct a
third parallelepiped, and so on. Since the vertices of each parallelepiped are nodes, and
since there are only 2N nodes, there can be only finitely many parallelepipeds. The
linear programming problem and the two propositions imply that a unique minimal par-
allelepiped can be found around any colour in the gamut, so the finiteness implies that
the entire gamut will eventually be filled with non-overlapping minimal parallelepipeds.

It is possible that a target colour T is simultaneously on the boundaries of multiple
adjacent parallelepipeds. In that case, its minimal-energy sequence has two or fewer
entries that are not 0 or 1. Since the map σ is continuous, the coordinates for any
parallelepiped can be extended to the boundary of the parallelepiped, and any boundary
control sequences (in parallelepiped coordinates) will still be minimal, since they are the
limit points of minimal sequences in the interior. By the continuity of σ, it does not
matter which of the adjacent parallelepipeds is used: the boundary control sequence will
be identical. �

Figure 2 shows an example of a parallelepiped dissection of the colour gamut in Figure
1. In that case, there were four primaries, and the gamut was dissected into four paral-
lelepipeds. Details of this example will be given after a dissection algorithm is presented
formally.

The existence of a set of minimal parallelepipeds that fills the gamut is a major result
of this paper. Leaving aside questions of uniqueness, which the next section will deal with,
we have assigned every colour in the gamut to its minimal-energy sequence. Furthermore,
the assignment can be expressed in a geometrically tangible form, as a dissection of three-
dimensional colour space. Designers can therefore start from the user’s world (visible
colour stimuli), and arrive naturally at the engineer’s world (a set of power outputs for
primaries).

3.3.1 Possible Non-Uniqueness of Minimal Sequences

Although a minimal dissection always exists, a simple example will show that it need
not be unique: multiple minimal dissections can occur. Cases with multiple minimal
dissections are non-generic, however, and can easily be adjusted to produce a unique
dissection. Figure 3 gives an example. Suppose there are four primaries, v1 through v4,
as shown in the figure. They form a square pyramid, whose apex is at the origin. Then
one can see geometrically that

v1 + v3 = v2 + v4. (26)

Now suppose that each primary consumes one unit of energy when at full intensity. Then
either side of Equation (26) requires two units of energy. Furthermore, there are many
other metameric combinations for this point, such as 1

3
v1 + 2

3
v2 + 1

3
v3 + 2

3
v4. All the
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Figure 3: Multiple Minimal-Energy Sequences for the Same Colour

metamers also require two units of energy. If there are only these four primaries, then all
these metamers are minimal-energy.

Two possible minimal dissections for the gamut G produced by the four primaries are

G = P0,123 ∪ P0,134 ∪ P1,234 ∪ P3,124, and (27)
G = P0,124 ∪ P0,234 ∪ P2,134 ∪ P4,123. (28)

The existence of two minimal dissections, however, is unstable: adjusting some parameters
by a negligible amount can eliminate one of the possibilities. A simple approach to this
particular problem is to adjust the energy for any one of the primaries, say v1. On physical
grounds, a small adjustment is reasonable, because the measurement of the energy is only
good to a certain number of significant digits. Rather then using E(v1) = 1, for example,
assume that E(v1) = 0.999. Then the left side of Equation (26) uses less energy than the
right side. It will then follow that the dissection given in Equation (27) is not minimal,
but the dissection in Equation (28) is.

3.3.2 Other Dissections

Gamut dissections for multi-primary displays have occurred previously.2,3,5 Rodriguez-
Pardo et al.,5 as well as Centore and Brill,3 each presented parallelepiped dissections.
Ajito et al.2 presented “matrix switching,” which dissected the gamut into pyramids with
apices at the origin.

While it is interesting to note that dissections, and particularly parallelepiped dissec-
tions, have occurred in other contexts, comparisons are not really apropos, because the
authors’ aims are different. Rodriguez-Pardo and Ajito were both interested in compu-
tational efficiency, the first author for calculating the gamut’s volume, and the second
author for assigning control sequences. Ajito’s method reduced a three-dimensional look-
up table (LUT) to a two-dimensional LUT. All the pyramids originated at the origin, so
each pyramid was restricted to a convex set in the chromaticity diagram; those convex sets
were the basis of the two-dimensional LUT. Centore and Brill were looking for a method

c© 2015 Paul Centore 14



MINIMAL-ENERGY CONTROL SEQUENCES

that allowed easy extension to further primaries. Other motivations might also be rea-
sonable when assigning control sequences, such as producing spectral matches,1 reducing
the effects of observer metamerism, or catering to colour-deficient viewers. The current
paper, of course, aims to minimize energy consumption. While the needed calculations
are likely reasonably efficient, no attempt was made to maximize efficiency, nor to achieve
other goals. The minimal-energy dissection should therefore stand on its own, rather than
be compared with other dissections.

4 The Dissection and Assignment Algorithms
Once the primaries’ XY Z colours and energy consumptions are known, the following
dissection algorithm, which is based on the proof of the theorem, will generate a minimal-
energy dissection:

1. Construct all the parallelepipeds in the gamut:

(a) List the 2N nodes in the gamut. A node is the sum of all primaries whose
indices are in a subset S of {1, 2, 3, . . . , N}.

(b) The set Sc is the complement of S. Sc is the indices of the remaining primaries,
that are not in the node. For each node, construct Sc.

(c) For each node, list the combinations (if any) of three primaries in Sc. The ith
combination comb(i) is a set of three distinct indices, {ai, bi, ci}, all of which
are in Sc.

(d) For each S and comb(i), there is a parallelepiped P
S,comb(i)

. Every paral-
lelepiped is of this form, so we have constructed a complete list of paral-
lelepipeds.

2. For each parallelepiped P
S,comb(i)

:

(a) Choose an arbitrary control sequence α in the interior of P
S,comb(i)

. This se-
quence will have 1’s for every primary in S, entries between 0 and 1 for the
three primaries in comb(i), and 0’s elsewhere.

(b) Calculate the colour T = C(α), and solve the linear programming problem
defined by Equations (8) through (10). The open-source Octave/MATLAB
routine glpk() is sufficient for this problem.

(c) If the solution to the linear programming problem is again α, then Proposition
2 implies that every control sequence defined by P

S,comb(i)
is minimal-energy.

Declare the parallelepiped as a whole to be minimal-energy; otherwise, declare
the parallelepiped is not minimal-energy.

3. The result of Step 2 is a list of minimal-energy parallelepipeds. In the generic case,
this list will dissect the gamut completely. Check for dissection by making sure that
none of the minimal-energy parallelepipeds overlap; if there are no overlaps, then
we have found a dissection, and the algorithm terminates.
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Primary X Y Z Energy
R 6.3 2.5 0.0 1
G 1.9 8.7 2.5 3
B 2.4 2.8 16.7 2
Y 4.9 3.8 0.0 4

Table 1: XY Z Coordinates and Energy Consumption for Primaries

4. If there are overlaps, then identify unstable equal-energy relationships like the one
in Equation (26). Adjust one or more energy levels very slightly, to invalidate those
relationships, and re-run the algorithm.

Once the gamut has been dissected into parallelepipeds, the following assignment
algorithm determines the minimal-energy sequence for a target colour T, without solving
a linear programming problem:

1. Determine which parallelepiped T belongs to.

2. Subtract the originating vertex of that parallelepiped from both T and the paral-
lelepiped. The result will be a shifted parallelepiped that starts at the origin, and
a T ′ that is contained in the shifted parallelepiped.

3. Construct a change-of-basis matrix M from XY Z coordinates to the generating
vectors of the shifted parallelepiped.

4. Multiply T ′ by M−1 to find the coefficients for the generating vectors. All the
primaries that make up the originating vector will have coefficients of 1, and all
remaining primaries will have coefficients of 0.

Once the primaries and their energy consumptions are known, the dissection algorithm
needs to be run only one time, to determine a set of parallelepipeds. Similarly, a matrix
M can be precomputed for each parallelepiped, to make later computations faster.

5 Dissection Example

This section will give a simple hypothetical example involving four primaries, shown
in Figure 4. The primaries are the red, green, blue, and yellow (R,G,B,Y ) primaries,
taken from Figure 2 of Reference 1. Table 1 gives the CIE XY Z coordinates for these
primaries, and Figure 5 displays them in XY Z space. Table 1 also gives the primaries’
energy consumption; these consumptions are hypothetical values that provide a simple
illustration . The entries in this table will reappear as entries in the matrix representations
for the linear transformations C and E. The complete gamut in Figure 1 is the polyhedron
(in fact, the zonohedron) generated from these four primaries, using Equation (2).
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Figure 5: Four Primaries in XY Z Space
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The first step in the dissection algorithm is to construct all the parallelepipeds in the
gamut, by an exhaustive search. The eight possible parallelepipeds are:

Pφ,RGB, (29)
Pφ,RGY , (30)
Pφ,RBY , (31)
Pφ,GBY , (32)
PR,GBY , (33)
PG,RBY , (34)
PB,RGY , (35)
PY,RGB, (36)

where φ denotes the empty set: parallelepipeds with φ for an originating vertex start at
the origin.

In accordance with Step 2 of the dissection algorithm, each parallelepiped was in-
vestigated individually, to see whether the control sequences it generated were in fact
minimal-energy. PG,RBY provides an example. The center of this parallelepiped was cho-
sen as an arbitrary control sequence in the parallelepiped’s interior. The center is given
by G + (1/2)(R + B + Y ), which is approximately [8.7, 13.3, 10.8] in XY Z coordinates.
The linear programming problem given by Equations (8) through (10) was then solved,
with

E(R,G,B, Y ) = R + 3G+ 2B + 4Y, (37)

C(R,G,B, Y ) =

 6.3 1.9 2.4 4.9
2.5 8.7 2.8 3.8
0.0 2.5 16.7 0.0



R
G
B
Y

 , (38)

T = [8.7, 13.3, 10.8]. (39)

The solution to this programming problem was a minimal-energy control sequence:

α =

[
1

2
, 1,

1

2
,
1

2

]
, (40)

which is just the coordinate expression for the center of the parallelepiped. Since the
coordinates given by the parallelepiped for the center are in fact a minimal-energy control
sequence, Proposition 2 insures that the coordinates for every point in that parallelepiped
are also minimal-energy sequences. Therefore, the parallelepiped PG,RBY was included in
the minimal dissection.

Similar tests were performed on the remaining seven parallelepipeds, using their centers
as a test sequence for convenience. Sometimes the control sequence at the center was
not minimal-energy, in which case that parallelepiped was rejected. Otherwise, it was
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accepted. In all, four parallelepipeds were accepted:

Pφ,RGB, (41)
Pφ,RGY , (42)
PR,GBY , (43)
PG,RBY . (44)

These four parallelepipeds are shown in Figure 2, in an exploded view. When re-assembled,
they perfectly dissect the gamut shown in Figure 1. This dissection does not use the Y
primary if it can be avoided. The R and G primaries are preferred instead, as origins
of the dissecting parallelepipeds. This preference makes sense: Y consumes more energy
than the other primaries, so it should only be used when substitutions are impossible. As
is almost always the case, this example is generic, so there is no overlap between any of
the accepted parallelepipeds. Had some of the parallelepipeds overlapped, some of the
energy levels could have been adjusted very slightly, to move to a generic problem.

6 Summary and Further Investigations
This paper has proven that minimal-energy control sequences take a simple geometric
form for linear multi-primary displays. The display gamut in CIE XY Z space can be
dissected into parallelepipeds. The originating vertex of each parallelepiped is a sum of
primaries at full intensity. The sides of each parallelepiped are translations of three other
primary vectors. The minimal-energy control sequence for a colour in a parallelepiped is
the sum of the originating vertex, plus a unique linear combination of the three vectors
that generate the sides. In the generic case, each colour has only one minimal-energy
sequence, so there is only one such dissection. The existence of a dissection was proven
mathematically, a simple algorithm was given to determine the dissection, and an example
was presented.

This paper has dealt with only the special case in which energy functions are linear.
Of course, energy functions for different display technologies can take many forms, often
considerably more complicated. As a result, their minimal-energy sequences will also
likely be more involved than a simple dissection. The mathematical approach used here is
already somewhat elaborate, and even more elaborate approaches would likely be needed
for other energy functions. It is hoped, however, that this rigorous analysis of the linear
case will serve as a stepping stone for more general cases.
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