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Abstract

A control sequence gives the intensities of the primaries for a pixel of a
display device. The display gamut, i.e. the set of all the colours that a display
can produce, is a zonohedral subset of CIE XY Z space, and contains both
boundary and interior colours. Displays with four primaries or more exhibit
metamerism, in which different control sequences produce colours that appear
identical to an observer. This paper shows mathematically that, provided no
three primaries are linearly dependent, metamerism can only occur for interior
colours. When there are four or more primaries, metamers can always be
found for interior colours. A colour on the gamut boundary, by contrast, is
only produced by a unique control sequence. The proof used for displays can be
extended to object-colour solids, to show that optimal colours, which are on the
boundary of an object-colour solid, have unique reflectance functions.
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1 Introduction
Display devices such as computer monitors and televisions typically produce three
primaries: red, green, and blue. A primary is a coloured light source whose intensity
varies, but whose relative spectral power density does not. Combining the primaries
at differing intensities produces a wide gamut of colours. Recently, multi-primary
displays, involving more than three primaries, have been introduced, to produce an
even wider gamut. The list of coefficients in a combination of primaries is called a
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control sequence. Each coefficient in a control sequence is between 0 (i.e., a primary
is not activated at all) and 1 (i.e., a primary is activated at maximum intensity).

In 1931, the Commission Internationale de l’Éclairage (CIE) defined a standard
observer,1 who converts a colour stimulus to three perceptual coordinates: X, Y, and
Z. Two colour stimuli, such as two combinations of primaries, appear identical to the
standard observer if and only if their XY Z coordinates are equal. The display gamut
is the subset ofXY Z space, consisting of theXY Z coordinates for all possible control
sequences. When written in XY Z coordinates, each primary in a display becomes
a vector. The gamut is the Minkowski sum of the primaries, in three-dimensional
XY Z space, and is thus a zonohedron. Every zonohedron is a closed, convex set. As
long as there are at least three independent primaries, the zonohedron has a non-
empty interior. Furthermore, any point of a zonohedron that is not an interior point
is a boundary point.

Human colour vision is three-dimensional, so the control sequence for any colour
in the gamut is unique when there are only three linearly independent primaries.
Adding more primaries expands the device’s colour gamut, but introduces meta-
merism: a colour in the gamut might result from many different combinations of
the primaries, instead of from a unique combination. Two control sequences are
metameric if and only if their XY Z vectors are equal.

This paper will prove mathematically that, as long as no three primaries are
linearly dependent, metamerism cannot occur on the gamut’s boundary. In other
words, a colour on the boundary of the display gamut can be produced by one, and
only one, control sequence. An interior point, by contrast, is produced by a unique
control sequence only when there are three primaries. If there are four or more
primaries, then any interior point can be produced by multiple control sequences.

The proof involves interpreting the zonohedron’s support planes as the maximum
of a linear functional. The proof applies not only to display gamuts, but also to
object-colour solids, which are zonohedral combinations of monochromatic stimuli.
The boundary of an object-colour solid consists of so-called optimal colours, and
the proof can be extended to show that an optimal colour results from a unique
reflectance function.

A statement of the uniqueness result occurred in a 2004 paper by Kanazawa et
al,2 who used it in their spherical average construction. No proof was given, however.
The proof in the current paper fills this gap, and provides a rigorous basis for their
construction.
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2 Uniqueness and Non-Uniqueness of Control Se-
quences

2.1 Geometry of Display Gamuts

A display device combines a limited set of primaries to produce a wide gamut of
colours. A primary is a light source of fixed relative spectral density, whose intensity
can vary from 0 to some maximum, which can be denoted 1. Geometrically, primaries
and their combinations can be represented by CIE XY Z coordinates, which can be
viewed as vectors in the positive octant of R3. The set of all possible combinations
of primaries forms a solid, called the display gamut, in the positive octant. Suppose
that N primaries are available. Denote the XY Z vector of the ith primary by vi. The
display gamut, G, consists of all possible combinations of primaries, at all intensities
from 0 to 1:

G =

{
N∑
i=1

αivi

∣∣∣αi ∈ [0, 1] ∀i

}
. (1)

The XY Z coordinate vector of a combination of primaries, such as appear in Equa-
tion (1), is the sum, in the vector space sense, of the XY Z coordinates of the in-
dividual primaries, multiplied by the appropriate αi. A sequence of N coefficients
αi, i = 1 . . . N, all of which are between 0 and 1, is called a control sequence.

Equation (1) shows that the gamut G is the zonohedron generated by the N
primary vectors in the positive octant. A zonohedron is the Minkowski sum of a
set of vectors. The Minkowski sum, or vector sum, of two sets, A and B, in Rn, is
defined as

A⊕B = {a+ b|a ∈ A, b ∈ B}. (2)

More concretely, the Minkowski sum of A and B is the volume (or area) that B
sweeps out when its tail can be located at any point in A. The Minkowski sum is
both commutative and associative.

The Minkowski sum of two vectors is the parallelogram swept out by letting ei-
ther vector slide along the other. The Minkowski sum of a parallelogram and another
vector, not in the same plane, is the parallelepiped swept out by sliding the paral-
lelogram along that vector. Figure 1 shows the Minkoswki sum of a parallelepiped
and another vector in R3. The parallelepiped generated by {v1,v2,v3} appears on
the left. On the right is the zonohedron of {v1,v2,v3,v4}. To make the figure on
the right, place a copy of v4 at each vertex of the figure on the left, and then take
the convex hull; alternately, slide the parallelepiped on the left along the vector v4.
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Figure 1: Construction of Zonohedron

Zonohedra are convex and two-fold rotationally symmetric. A zonohedron’s faces
are all parallelograms, provided that no three generating vectors are coplanar, and no
generating vector is a multiple of another generating vector. These two statements
are subsumed in the equivalent single statement that no three generating vectors are
linearly dependent.

Expression (1) shows that there can be some redundancy, or metamerism, in the
display gamut. Metamerism in the context of display devices occurs when two differ-
ent control sequences produce the same XY Z tristimulus values. From a practical
point of view, metamerism should usually be avoided in displays, because individ-
uals who differ slightly from the CIE standard observer might see two metameric
colours as different, when they should appear identical. Metamerism cannot occur
when there are only three (linearly independent) primaries. XY Z space can be seen
as a vector space, in which Equation (1) gives linear combinations of the primaries.
When there are only three primaries, they form a basis for the vector space, so any
point can be written as only one linear combination of the primaries.

2.2 Proofs of Uniqueness and Non-Uniqueness

As a convex set, a zonohedron can be partitioned into interior points and boundary
points. The main result of this paper is that metamerism cannot occur for boundary
points, although it can always occur for interior points, when there are four primaries
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or more. Stated otherwise: when a point is on the boundary of the zonohedral gamut,
it is generated by a unique control sequence. Kanazawa2 states this fact, but does
not prove it. We will adapt the methods used by McMullen3 to give a proof.

Theorem 1. If no three primaries are linearly dependent, then any point P on the
boundary of a display gamut G, generated by an arbitrary number of primaries, is
produced by a unique control sequence.

Proof. The proof uses the characterization of a convex set (such as the display
gamut) as the intersection of all the half-spaces containing it.4 A support plane of
the gamut G is a plane that contains at least one point of G, but no interior point of
G. Support planes intersect the boundary of G; the intersection with the boundary
can be a vertex, an edge, or a face. In this proof, only support planes that intersect
faces will be needed. G (or at least, its interior) is in a half-space defined by any
support plane. Furthermore, a support plane S is as close as possible to, but does
not actually intersect, the interior of G, when compared to parallel planes. Since the
zonohedral gamut starts at the origin, and reaches the support plane, but does not
reach any further, therefore any combinations of generating vectors that reach the
support plane must be maximal in a sense that we will make precise.

In a general vector space V, such as CIE XY Z space, there is no inner product
with which to measure the distance of a hyperplane (such as a support plane), from
the origin. However, as shown in Chapter 2 of a textbook by Lay,5 every hyperplane
is a level set of some linear functional, and conversely, all the level sets of a (non-
zero) linear functional are parallel hyperplanes. Therefore, given a support plane S,
that does not contain the origin, we can find a linear functional fS on V, such that
fS(S) = 1. For any k, kS is a plane parallel to S, and fS(kS) = k. We can think of
fS as defining a distance from the origin to any plane parallel to S. If the support
plane contains the origin, then let fS be any linear functional that is 0 on the support
plane, and positive everywhere on the zonohedron, which is always on one side of
the support plane.

Now choose a point P that is on a face of the gamut boundary, but not on an
edge or vertex. We will first show that there is a unique control sequence for P,
when P is interior to a face, and then proceed to the case where P is on a vertex
or edge. Let S be the support plane through P. Since P is interior to a face F, it
follows that S is unique, and contains F. Define fS as was explained in the previous
paragraph. Translate S to a parallel plane S0, that intersects the origin. S0 divides
the generating vectors at the origin into three groups: those for which fS is negative,
those for which it is positive, and those for which it is zero. Call the first group the
negative generators, the second group the positive generators, and the third group
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Figure 2: Translated Support Plane, Separating Generating Vectors

the zero-level generators.
Figure 2 shows an example. The face F containing P is the parallelogram with

vertices v1, v1 + v2, v1 + v4, and v1 + v2 + v4. The support plane S contains
translated copies of v2 and v4. S0, given by translating S to the origin, contains the
original v2 and v4. v2 and v4 are therefore the zero-level generators. The functional
fS is positive for vectors pointing away from S0 and towards S, so v1 is a positive
generator. Since v3 points towards the other side of S0, it is a negative generator.

The negative and positive groups lie on different sides of the plane through the
origin. We will show that the coefficients in the control sequence must be 1 for the
positive generators, and 0 for the negative generators. Since the zonohedron is on
one side of the support plane, but as close as possible to it, therefore the support
plane represents the maximum non-negative value that fS attains on the zonohedron.
Denote a point v of the zonohedron by

v =
N∑
i=1

αivi. (3)

By linearity,

fS(v) =
N∑
i=1

αifS(vi). (4)
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The positive generators contribute positive values of fS to Expression (4), while the
negative generators contribute negative values. Since all quantities are fixed in Ex-
pression (4) except αi, the expression is maximized by making αi as large as possible,
which means setting it to 1, for positive generators. Similarly, the contributions of
the negative generators must be minimized, so their coefficients are set as small as
possible, which means 0. This maximum gives unique coefficients for the positive and
negative generators. Denote the sum of the positive generators, all with coefficients
1, by w. By construction, w is a point in the original S, and the vector P −w can
be translated to lie in S0.

The remaining generators, if any, must be zero-level generators in S0. Since it was
assumed that no three primaries are linearly dependent, there can be at most two
zero-level generators, and the set of zero-level generators is itself linearly independent.
P is the sum of w and a positive linear combination of the (at most two) zero-level
generators. Since there are no more than two zero-level generators, and since S0 is a
two-dimensional vector subspace of V, therefore P − w has unique coefficients as a
linear combination of the zero-level generators. These same unique coefficients apply
when P is written as

P = w + (P −w), (5)

because the bases for the positive generators and zero-level generators are distinct.
In summary, then, any P, that is interior to a face, has unique coefficients for all

positive, negative, and zero-level generators, which partitions the set of generating
vectors into distinct subsets. The coefficients give a unique control sequence for P.
The positive generators can be seen as pushing a hyperplane away from the origin,
through the zonohedral gamut, as far as possible. The maximum distance is achieved
when the hyperplane becomes a support plane. The requirement to reach a maxi-
mum guarantees uniqueness. Once the plane has become a support plane, a linear
combination of the zero-level generators defines the position of P in the plane, and
the uniqueness of this linear combination follows from linear algebra. Furthermore,
a vertex can be written as the sum of all generating vectors which are on one side
of a plane through the origin. In fact, the converse is also true (though not proven
here). Draw a plane through the origin, and add up all the generating vectors on
one side of it: then this sum is a vertex.

In the example in Figure 2, the only positive generator is v1, so we have simply
w = v1. Furthermore, there are exactly two zero-level generators, v2 and v4. The
unique control sequence of P is

P = v1 +
1

2
v2 +

1

4
v4. (6)
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The foregoing constructions allow a finer description of any parallelogram face
F. The vector w gives a distinguished vertex of F, which we call the originating
vertex. The edges of F that originate at w will be called originating edges. The
originating edges are translates of two generating vectors, va and vb. The other two
edges are terminating edges, and the vertex opposite w is the terminating vertex. A
parallelogram’s vertices can then always be written in a unique way as w, w + va,
w + vb, and w + va + vb.

We will now show that any gamut vertex V has a unique control sequence. By
way of contradiction, assume that V has two control sequences:

V =
N∑
i=1

αivi, where αi ∈ [0, 1], (7)

and

V =
N∑
i=1

βivi, where βi ∈ [0, 1]. (8)

Construct Vmin, given by choosing the smaller of the two coefficients for each gen-
erating vector:

Vmin =
N∑
i=1

min(αi, βi)vi. (9)

The difference V−Vmin has two expressions, one involving α’s and the other involving
β’s. Denote these two expressions by Vα and Vβ :

V − Vmin =
N∑
i=1

(αi −min(αi, βi))vi = Vα (10)

=
N∑
i=1

(βi −min(αi, βi))vi = Vβ. (11)

Now consider the following three vectors:

Vmin, (12)
Vmin + Vα, (13)
Vmin + Vα + Vβ. (14)
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The first one, Vmin, is in the gamut, because all the coefficients are between 0 and
1, as can be seen from Equation (9). The second one, Vmin + Vα, is just the original
vertex V, as can be seen from Equation (10), so it is also in the gamut. Finally,
Equations (10) and (11) can be used to write the third vector as:

Vmin + Vα + Vβ =
N∑
i=1

(αi + βi − 2 min(αi, βi)).vi (15)

Since αi and βi are both between 0 and 1, the coefficients in Equation (15) are
between 0 and 1 as well, so the third vector is also in the gamut. Therefore each of
the three vectors is in the gamut. Furthermore, Equations (10) and (11) show that
Vα = Vβ, so the third vector can be rewritten Vmin + 2Vα. Written in this way, it
becomes clear that the three vectors in Equations (12) through (14), all of which are
in the gamut, lie on a straight line, with the vertex V in the middle. Since the gamut
is convex, this is a contradiction. The only resolution is to conclude that Vα is the
zero vector, which is to say, that the representation of V in Equation (7) is unique,
as desired.

Finally, we will show that all points on the edges of the zonohedral gamut have
unique control sequences. Let P be a point on an edge, E, that joins two vertices,
V1 and V2. In a convex solid such as the zonohedral gamut, an edge can only occur
as a line segment joining one pair of vertices, so V1 and V2 are unique. From the
construction in Figure 1, V1 and V2 differ by a generating vector, vg. Switching the
numbering of V1 and V2 if necessary, we obtain

V2 = V1 + vg. (16)

Since P is on the line joining V1 and V2, it is possible to write

P = V1 + kvg, (17)

where k ∈ [0, 1]. Now let P be given by some control sequence:

P =
N∑
i=1

αivi, where αi ∈ {0, 1}. (18)

We will show that, the coefficient αg of vg in any control sequence for P, is in fact
equal to k. Substitute Equation (18) into Equation (17):

N∑
i=1

αivi = V1 + kvg (19)

V1 =
∑
i 6=g

αivi + (αg − k)vg. (20)
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Since V1 is a vertex, its control sequence is unique. In addition, it follows from
Equation (16) that the coefficient of vg is 0. Therefore, in any control sequence for
P, it must be that αg = k, so αg is unique. But more can be inferred from Equations
(17) and (20): if there were two distinct control sequences for P, then there would
be two distinct control sequences for the vertex V1. Since it has already been shown
that vertices have unique control sequences, it follow that control sequences are also
unique for a point P on an edge of the gamut.

In summary, we have shown that vertices, points on edges, and points in the
interior of the gamut’s faces, all have unique control sequences. In other words, any
colour on the boundary of the display gamut has a unique control sequence, as was
to be shown. �

When there are only three independent primaries, the zonohedral gamut is a
parallelepiped. Since the three primaries are independent, they form a basis for
XY Z space, so any point, in particular any point inside the gamut, has a unique
control sequence. In the typical three-primary display, then, control sequences are
unique for both the interior and the boundary of the gamut.

When there are more than three primaries, boundary points have unique control
sequences, but interior points do not:

Theorem 2. Suppose a display device has four or more primaries, which generate a
display gamut, G, with non-empty interior. Then a point P in the interior of G can
always be produced by multiple control sequences.

Proof. We will first show that P can be written with a control sequence whose
coefficients are all greater than 0 and less than 1. Draw the line L from the origin
(where every control sequence coefficient is 0) to P. Since G is convex, L is contained
in G. Since P is in the interior of G, there exists a sphere σP around P that is
completely contained within G. Extend L to a longer line L′, that continues past P,
to a new point P ′, that is inside σP . There is a positive ε such that L′ = (1 + ε)L.
Since P ′ is within G, there is some set of coefficients, α′i, such that

P ′ =
N∑
i=1

α′ivi. (21)

Every primed coefficient is between 0 and 1, and may possibly take on the values 0
or 1. As vectors, P ′ = (1 + ε)P, so

P =
N∑
i=1

α′i
1 + ε

vi. (22)
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Because of the denominator, all the coefficients for P in Equation (22) are now
strictly less than 1.

A set of coefficients for P, that are not only all strictly less than 1, but also all
strictly greater than 0, is found similarly. Draw the line M that connects F =

∑
vi

to P. The point F is the point on G that is farthest from the origin. Similarly to the
previous step, extend M to a longer line M ′′, that continues past P, to a new point
P ′′, that is in σP . There is some positive δ such that

P ′′ − F = (1 + δ)(P − F ). (23)

Now apply Equation (22) to P ′′, instead of P, to conclude that there exist coefficients
α′′i , such that

P ′′ =
N∑
i=1

α′′i vi, (24)

where every α′′i is strictly less than 1, and some α′′i ’s might be 0. Substitute the
vector space expressions for F and P ′′ into Equation (23), and rearrange to get

P =
N∑
i=1

α′′i + δ

1 + δ
vi. (25)

Since every α′′i is strictly less than 1, it follows that every coefficient in Equation
(25) is also less than 1. Since every α′′i is greater than or equal to 0, the numerator
insures that every coefficient in Equation (25) is strictly greater than 0. Equation
(25) therefore presents a control sequence for an interior point P, such that every
coefficient is strictly between 0 and 1, as desired.

To finish proving the theorem, assume, by way of contradiction, that there is a
unique control sequence, αiP , such that

P =
N∑
i=1

αiPvi. (26)

P is an interior point of G, so the previous argument, combined with the assumed
uniqueness, implies that 0 < αiP < 1, for all i. Since there are more than three
primaries, in a three-dimensional space, there exists a set of coefficients βi, not all 0,
such that

N∑
i=1

βivi = 0. (27)
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Equation (27) will hold even if all the β’s are multiplied by an arbitrarily small
constant γ. Multiplying Equation (27) by γ, and adding Equation (26) gives

P =
N∑
i=1

(αiP + γβi)vi. (28)

The original control coefficients, αiP , are all strictly between 0 and 1. By choosing
γ small enough, the coefficients αiP + γβi are also strictly between 0 and 1, and
therefore Equation (28) defines a point in G. The coefficients in Equations (26) and
(28) are different, however, proving that the control sequence in Equation (26) cannot
be unique. �

Theorem 2 shows that metamerism is inevitable with multi-primary displays. As
soon as a fourth primary is added, points inside the gamut have multiple represen-
tations. Metamerism can therefore not be avoided by choosing primaries judiciously.
Neither is it possible that metamerism will be a problem only with some colours
inside the gamut: Theorem 2 shows that every interior colour can be produced by
multiple control sequences. By contrast, colours on the boundary gamut are bet-
ter behaved. It is in fact impossible to use different representations for a boundary
colour, because Theorem 1 shows that control sequences are unique on the gamut
boundary.

3 Discussion
As mentioned, the uniqueness result was stated without proof by Kanazawa et al.
They also omitted the technical requirement that no three primaries are linearly
independent. They used the result in their spherical average construction. This
construction expresses a point in the gamut’s interior as a weighted sum of points
on the gamut’s boundary. Since the boundary control sequences are unique, the
same weighted sum, applied to the unique control sequences of the boundary points,
gives a unique control sequence for points inside the zonohedron. Furthermore, the
averaging process guarantees that the assignment of control sequences is continuous.
Their construction avoids metamerism and spurious discontinuities in multi-primary
displays. By filling a technical gap, the current proof provides a rigorous basis for
Kanazawa’s work.

Another display application is the matrix-switching method of Ajito et al.6 The
matrix-switching method partitions a display gamut into irregular pyramids, each
of whose bases is a boundary parallelogram, and the common apex of which is the
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origin. The assignment method involves a different matrix for each pyramid. Their
construction can be more directly seen, though perhaps not easily calculated, by
invoking the uniqueness of boundary control sequences. Given a point P inside the
gamut, draw the ray from the origin through P. That ray crosses the gamut boundary
at some point C. By convexity, this crossing point is unique. Because P and C are
on the same line through the origin, there is a positive constant k, less than 1, such
that P = kC. The control sequence for the boundary point C is unique. Defining
the control sequence for P to be k times the control sequence for C specifies a single
sequence for P, thus avoiding on-screen metamerism, which was one of the goals.
In fact, this assignment method gives the same result as Ajito’s matrix-switching
method, but with a simpler interpretation.

The current proof is believed to be the first published proof of control sequence
uniqueness on a gamut boundary, as well as the first to state the technical requirement
that no three primaries are linearly independent. A proof of a similar statement,
about the object-colour solid, has been claimed by A. Logvinenko. In a footnote
to a 2009 paper,7 he wrote “Although this intuitively clear statement [that there
is no metamerism on the boundary of the object-colour solid] has been made by
several authors before, ... the formal proof has not been known until recently.” A
reference is then given to an unpublished manuscript, Foundations of colour science.
It is likely that techniques of analyzing the object-colour solid would shed light on
display gamuts as well, so it would be interesting to compare the approaches once
they are both published.

For many applications, it would be desirable for the display gamut and the object-
colour solid to be identical subsets ofXY Z space. Since displays have a finite number
of primaries, however, while the object-colour solid is generated by the infinite set of
monochromatic vectors in the spectrum locus, the two subsets will never be identical.
Nevertheless, their structures are similar. A recent paper of Centore8 approximates
the object-colour solid as a zonohedron. In that paper, the generating vectors were
XY Z vectors for monochromatic spectral densities. In practice, a finite set of such
densities is used, while in theory the set is infinite. As the finite set becomes infinite
in the limit, the zonohedra corresponding to the finite sets approach a set called a
zonoid. This zonoid has a smooth surface, with no edges or faces, although there are
vertices at ideal black and ideal white. A display gamut, by contrast, is genuinely a
zonohedron, because the set of primaries is always finite. Thus a display gamut has
a finite set of parallelogram faces.

A colour on the boundary of the object-colour solid is called an optimal colour.
The Optimal Colour Theorem states that the reflectance function (over the visible
spectrum) of an optimal colour takes on only the values 0% and 100%, with at most
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two transitions between those values. By applying the methods of Theorem 1 to
object-colour solids, and using the empirical finding that no three vectors in the
spectrum locus are linearly dependent, it follows that there is a unique reflectance
function for each optimal colour. Centore discretized reflectance functions over the
visible spectrum, and constructed a zonohedral approximation to the object-colour
solid. Optimal colours were taken to be the vertices of that zonohedron. The Op-
timal Colour Theorem then followed from the convex, cyclic form of the spectrum
locus, and the fact that a zonohedron’s vertices are sums of primaries at maximum
activation. Rather than just taking vertices as optimal colours, any boundary point
of the zonohedron could have been taken as an optimal colour; this interpretation
was not needed because the distinction between vertices and other boundary points
disappears in the zonoidal limit. In the case of display gamuts, non-vertex boundary
points must be considered—in fact, they make up far more of the boundary than the
few vertices. Thus the detailed proof of Theorem 1 was necessary.

Stiles and Wyszecki, along with other researchers, approached the problem of
metamerism and uniqueness from a computational point of view.9 Using a Monte
Carlo simulation, as well as linear programming and the central limit theorem, Stiles
and Wyszecki calculated how many metamers there were for a particular colour
in the object-colour solid. Since the object-colour solid and a display gamut are
similarly shaped subsets of XY Z space, their methods would work equally as well
for estimating how many control sequences could produce a particular colour in a
display gamut. An overall finding was that there were many metamers for colours
near the “center” of the solid, and progressively fewer farther away from the center,
terminating with a unique metamer on the boundary.

Though intuitively correct, their results should be interpreted with caution. The
reason is that, when counting “how many” metamers, they assigned uniform weight-
ings to the wavelengths in the visible spectrum, and to the possible values for the
reflectance factor for each wavelength. While this assignment seems natural enough,
it is not clear that there is any physical or perceptual justification for it. For a
multi-primary display system, however, it might be possible to find a weighting with
a practical basis. For example, one could count the number of subsets of primaries
that could be used to generate a given gamut colour. In a four-primary display, some
colours require that the coefficient of v4 be non-zero, so those colours would have
fewer metamers than those which could be generated from the first three primaries.
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4 Conclusion
This paper fills a technical gap, by presenting a mathematical proof of the statement
that metamerism does not occur on a display gamut boundary. Similar statements
have been made that optimal colours, on the boundary of the object-colour solid,
have unique reflectance functions. Although empirical evidence for these statements
has been found, it is believed that no proof has been published before now. In
addition, this paper is believed to be the first to state the technical requirement that
no three primaries are linearly dependent in CIE XY Z space. A related result, also
proven here, is that metamerism is inevitable on a gamut’s interior when there are
more than three primaries. All the proofs use a geometric approach, involving the
zonohedral structure of the display gamut.
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