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Abstract

The 1943 Munsell renotation includes a table that converts 2,734 Mun-
sell specifications into xyY coordinates, along with a graphical interpolation
method, and a graphical inversion method, that converts xyY coordinates back
into Munsell specifications. The current paper presents open-source computer
code, running in Matlab or Octave, that both interpolates and inverts the Mun-
sell renotation automatically. The steps in both algorithms are described in
detail. Like previous inversion algorithms, it relies on interpolations between
entries in the 1943 table. For colours near the MacAdam limits, the inversion
also requires extrapolations beyond the 1943 entries. The outputs of the current
implementation do not differ significantly from the outputs of other inversion
algorithms. The main distinguishing feature of the current algorithm is that
both the algorithm and code implementation are publicly available.

Keywords: Munsell, renotation, inverse renotation, open source, algorithm

1 Introduction

The Munsell colour system classifies object colours by three perceptual properties:
hue, value, and chroma. In 1931, the Commission Internationale de l’Éclairage (CIE)
used colorimetry to standardize an objective method1 of specifying when two colour
samples are perceptually identical. An important practical problem is to calcu-
late the Munsell coordinates of a colour stimulus from only its CIE specifications.
The 1943 Munsell renotation2 provided empirical data for this undertaking. First,
Newhall and his coworkers averaged many observers’ colour judgements to produce a
smoothed, experimentally sound, version of the 1929 Munsell system. Second, they
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measured the smoothed colour samples, producing Table I of the renotation,2 which
specifies 2,734 Munsell samples in CIE coordinates. This work confirmed previous
findings that Munsell value is solely a function of luminance factor, denoted Y in the
CIE system. Newhall’s renotation table, along with the supporting conditions and
methods of calculation, has been incorporated in the ASTM International standard
for the Munsell system.3

Newhall and coworkers2 recommended graphical methods for interpolation and
inversion in the Munsell renotation. To interpolate is to find the CIE coordinates
for an arbitrary Munsell specification, by averaging over the 2,734 renotation points.
To invert is to find the Munsell specification for a given set of CIE coordinates. This
paper presents algorithms for both interpolation and inversion, as well as an open-
source computer code implementation. As of January 2011, the implementation has
been submitted to the Colorlab project,4 and runs in either Matlab or its freely
available clone, Octave; the implementation requires some previous Colorlab code.
The two main computer routines are MunsellToxyY.m and xyYtoMunsell.m. If they
are not yet in Colorlab, then these routines, along with necessary supporting routines,
can be downloaded from www.99main.com/∼centore.

The interpolation and inversion algorithms presented here produce similar out-
put to previous algorithms such as those by Rheinboldt,5 Simon & Frost,6 ASTM,3

Wallkill,7 and BabelColor.8 Descriptions of the algorithms in the first three references
have been published, but no computer implementation is publicly available. Smith,
Whitfield, & Wiltshire9 mention a Pascal implementation of Rheinboldt’s algorithm,
freely available for non-commercial use, but this implementation could not be lo-
cated . The fourth and fifth references are commercial computer programs which
convert a user’s entries from Munsell to CIE coordinates, and vice versa; the code
for these programs is not publicly available, however, and neither are descriptions of
the underlying algorithms.

The current work was motivated by an investigation of shadow colours, which re-
quired about 1500 inversions. Graphically inverting 1500 CIE triples was prohibitive,
as was manual entry into a program such as Wallkill. Though BabelColor’s Patch-
Tool can convert text files of arbitrary length, it was also desired that the conversion
algorithm be explicit. To meet these demands, the algorithms presented here were
developed from scratch, as were the computer implementations. The openness of
both algorithms and computer code is believed to be unique. Other researchers are
invited to use and modify them.
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2 The Munsell Renotation

Albert Munsell originally defined the Munsell system conceptually. A colour is spec-
ified by its hue, value, and chroma. Hue is notated by a number between 0 and 10,
which prefixes one of ten hue names: red (R), yellow-red (YR), yellow (Y), green-
yellow (GY), green (G), blue-green (BG), blue (B), purple-blue (PB), purple (P),
and red-purple (RP). There are a total of 100 hues with integer prefixes. Value, indi-
cating how light a colour is, is a number between 0 (signifying black) and 10 (white).
Chroma extends from 0 (grey) to a positive number, which increases to a varying
perceptual limit as a colour’s difference from a grey, of the same Munsell hue and
value, increases. The 100 hues with integer prefixes are evenly spaced perceptually,
as are values and chromas. In addition to Munsell’s abstract definition, the 1929
Munsell Book of Color contained physical exemplifications of Munsell specifications.
This book became a physical standard for the system.

The Munsell renotation, incorporated into ASTM Standard D1535-08,3 defines
the Munsell system objectively, by using colorimetry to specify Munsell samples.
The Munsell system applies to reflective (i.e. non-self-luminous) colours, that inhere
in physical objects, rather than to coloured lights. Illuminant C, at levels character-
istic of indirect daylight, was chosen as the standard lighting source. Colorimetric
measurements were made of Munsell samples, from which their CIE coordinates were
calculated, relative to Illuminant C.

Standardized CIE coordinates were used to express the smoothed colours ob-
jectively. In 1931, the CIE defined three colour-matching functions, named x̄(λ),
ȳ(λ), and z̄(λ). The domain of the three functions is the visible region of the elec-
tromagnetic spectrum, spanning from approximately 360 nm to 760 nm. Illuminant
C is given by a spectral power distribution (SPD), C(λ), with the same domain as
the colour-matching functions. Tables I & II of Judd’s CIE paper1 tabulate the
colour-matching functions and the Illuminant C SPD.

In contrast to a light source, an object colour is specified by its reflectance spec-
trum, r(λ), for the same domain. The function r(λ) takes on values between 0 and 1,
or alternately, between 0 and 100 percent. At each wavelength λ, the object reflects
r(λ) percent of the quantity C(λ), which is the portion of the incident light whose
wavelength is λ. The SPD of the reflected light is therefore r(λ)C(λ). The relative
CIE coordinates for an object colour’s reflectance spectrum are

Xr =

∫ 760

360
x̄(λ)r(λ)C(λ)dλ∫ 760

360
ȳ(λ)C(λ)dλ

, (1)
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Yr =

∫ 760

360
ȳ(λ)r(λ)C(λ)dλ∫ 760

360
ȳ(λ)C(λ)dλ

, (2)

Zr =

∫ 760

360
z̄(λ)r(λ)C(λ)dλ∫ 760

360
ȳ(λ)C(λ)dλ

. (3)

Newhall uses a transformation of relative CIE coordinates:

x =
Xr

Xr + Yr + Zr

, (4)

y =
Yr

Xr + Yr + Zr

, (5)

Y = Yr. (6)

The variables x and y in this coordinate system are thought of as chromaticity
coordinates, while Y, because of the way the CIE defined ȳ(λ), is thought of as an
indicator of relative luminance. Y is called the luminance factor and is alternately
expressed as a value between 0 and 1, and as a percentage.

The Munsell system uses hue (pH), value (V ), and chroma (C), as coordinates. A
Munsell specification is of the form pH V/C, where p is a numerical prefix between 0
and 10, that modifies H. Neutral greys are expressed in the form NV, where V is the
grey’s value. Table I of the renotation2 converts 2,734 Munsell specifications to xyY
coordinates. The entries in Table I vary over all integer Munsell values from 1 to 9,
over all hues prefixed by 2.5, 5.0, 7.5, or 10.0, and over all chromas in even integer
steps, from 2 to the MacAdam limits. Although Table I does not list conversions for
greys, the chromaticity coordinates of any grey are identical to the neutral point of
Illuminant C:

x = 0.31006, (7)

y = 0.31616. (8)

The Y coordinate for a grey of value V can be read off from Table 1 of the ASTM
standard.3 Mathematically, Newhall’s table is a discretization of a function, f, from
{pH, V, C} to {Y, x, y}, given by three subfunctions:

Y = f1(pH, V, C), (9)

x = f2(pH, V, C), (10)

y = f3(pH, V, C). (11)

These three functions define the Munsell renotation.
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An important result, expressed in Eq. 2 of the ASTM standard,3 is that the first
function, f1, is given by a bijective quintic polynomial that only depends on V, and
not on H or C :

Y = f1(V ) = 0.00081939V 5 − 0.020484V 4 + 0.23352V 3 − 0.22533V 2 + 1.1914V,(12)

where V is the Munsell value, between 0 and 10, and Y is a percentage. In perceptual
terms, the Munsell value of a colour sample depends only on that sample’s luminance
factor. The ASTM quintic in Equation (12) is used because it fits empirical data
well. It is 0.975 times an earlier quintic on p. 417 of Newhall’s renotation paper,2

which measured the luminance factor with reference to a magnesium oxide standard;
the ASTM measures luminance factor with respect to a perfect white diffuser. The
ASTM scaling factor makes the Munsell value of 10 correspond to a reflectance factor
of 100%.

The problem of interpolation is to find xyY, for an arbitrary Munsell specifica-
tion. The problem of inversion is to find, for a given xyY, a Munsell specification
{pH, V, C}, such that f({pH, V, C}) = xyY. The following sections will present algo-
rithms for interpolation and inversion. The inversion algorithm uses the interpolation
algorithm, but interpolation can be performed without reference to inversion.

3 Renotation Interpolation

Table I of the renotation2 presents the Munsell renotation data as a look-up table,
that converts Munsell specifications directly to xyY coordinates. Interpolation, how-
ever, is needed for Munsell specifications that are not in Table I. The interpolation
will be performed in two steps: interpolation when the Munsell value is an integer,
and then interpolation for non-integers.

3.1 Interpolation for an Integer Munsell Value

Since the renotation provides data for integer Munsell values, this section will solve
the natural subproblem of interpolating when the Munsell value is an integer. First,
curves (ovoids and radials) are fit to the renotation data for an integer value, and
then those curves are interpolated over.

3.1.1 Constructing Ovoids and Radials

Figure 1 plots the xy coordinates for all colours with Munsell value 4, in Table
I of the renotation.2 Two sets of implicit curves are evident. The first are lines
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Figure 1: Plot of xy Coordinates of Colours of Value 4 in Table I of the renotation2

that radiate outward from the Illuminant C white point given by Equations (7) and
(8). The second are ovoids that are centered approximately on the white point. The
radials are lines of constant hue and varying chroma. The ovoids are lines of constant
chroma and varying hue. The two kinds of curves intersect at the renotation data.
The curves in Figures 1 to 9 of the renotation2 were manually drawn; they are ad
hoc curves that are reasonably smooth and go through the renotation points. A
mathematical scheme will automate this drawing of radials and ovoids.

The curves’ form suggests transforming x and y to polar coordinates about the
neutral point:

x− 0.31006 = r cos θ, (13)

y − 0.31616 = r sin θ. (14)

Under this coordinate transformation,

r =
√

(x− 0.31006)2 + (y − 0.31616)2. (15)

The angle θ is 0 for the ray through the neutral point, along the positive x−axis,
and is measured counterclockwise from that ray.

Ovoids are drawn through data points of the same chroma in Figure 1, requiring
interpolation. While Newhall et al. draw smooth curves visually in their Figures 1
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through 9, both Rheinboldt and Simon use linear interpolation. In sections of the
ovoid where curvature is high, linear interpolation distorts the ovoid’s shape.

To avoid this distortion, the current paper uses radial interpolation, about the
neutral point, for segments of high curvature. In radial interpolation, two adjacent
Munsell data points, of the same chroma, but of consecutive hues, are written in
polar coordinates, (r1, θ1) and (r2, θ2). The interpolating line between the data points
consists of all points (r3, θ3), such that

r3 − r1
r2 − r1

=
θ3 − θ1

θ2 − θ1

. (16)

If (r1, θ1) and (r2, θ2) were two points of a circle centered on the neutral point, then
the radial interpolation would be the circular arc joining them. Table 1 lists the
segments for which radial interpolation was used; all other segments were interpolated
linearly. In the third column, the segment’s counterclockwise boundary is listed
before its clockwise boundary; for example, the segment 10Y-5YR starts at the hue
10Y, and proceeds clockwise until 5YR.

The ad hoc choice of radial segments is admittedly inelegant. It would have been
preferable to make the segments either all linear, as Rheinboldt and Simon did, or
all radial. Both these options were tried, however, and both resulted in small but no-
ticeable errors. The routine LinearVsRadialInterpOnRenotationOvoid.m determines
whether a segment is linear or radial. Since the program is open source, a user could
easily add a few lines to this routine, so that it always specifies linear segments, or
always specifies radial segments.

The ovoids are curves of constant chroma. Curves of constant hue will be drawn
by linear interpolation between data points of the same hue, but consecutive chromas.

Figure 2 shows the ovoids and radials that result for Munsell value 4, when radial
interpolation is used for the segments listed in 1, and linear interpolation is used for
hue radials. Though not perfect, the ovoids are acceptably smooth. Similar figures
can be drawn for any integer Munsell value, using Table 1.

Ovoids and radials collapse to a point in the special case of value 10. When
Munsell value is 10, the only sample is a perfect reflecting diffuser, whose colour is
an ideal white. The renotation figure corresponding to Figure 2 therefore consists of
a single point, N 10/, whose chromaticity coordinates are given by Equations 7 and
8.

3.1.2 Interpolation with Ovoids and Radials

The previous constructions provide a model for some special cases. Let {pH, V, C}
be a Munsell specification, where V is an integer and C is an integer multiple of
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Value Chroma Radially Interpolated Hue Segments

1

2 10Y-5YR, 5P-10BG
4 7.5Y-2.5YR, 10PB-7.5BG
6 10PB-5BG
8 7.5PB-7.5B

≥ 10 7.5PB-2.5PB

2

2 7.5Y-5YR, 10PB-7.5PB
4 10Y-2.5YR, 10PB-2.5B
6 2.5Y-7.5R, 10PB-2.5B
8 5YR-7.5R, 10PB-10BG

≥ 10 7.5PB-5B

3

2 7.5GY-10R, 5P-5B
4 7.5GY-5R, 2.5PB-5BG

6, 8, 10 7.5GY-7.5R, 2.5P-7.5BG
≥ 12 2.5G-7.5R, 10PB-7.5BG

4
2, 4 2.5G-7.5R, 5P-7.5BG
6, 8 10GY-7.5R, 2.5P-7.5BG
≥ 10 10GY-7.5R, 10PB-7.5BG

5
2 7.5GY-5R, 5P-5BG

4, 6, 8 2.5G-2.5R, 5P-5BG
≥ 10 2.5G-2.5R, 2.5P-5BG

6

2, 4 7.5GY-5R, 7.5P-5BG
6 2.5G-5R, 7.5P-7.5BG

8, 10 2.5G-5R, 5P-10BG
12, 14 2.5G-5R, 2.5P-10BG
≥ 16 2.5G-5R, 10PB-10BG

7

2, 4, 6 2.5G-5R, 5P-10BG
8 2.5G-5R, 2.5P-10BG

10 5Y-5R, 2.5G-10Y, 2.5P-10BG
12 7.5Y-7.5R, 2.5G-10Y, 2.5P-10PB

≥ 14 5YR-7.5R, 10GY-2.5GY, 2.5P-10PB

8
2, 4, 6, 8, 10, 12 10GY-5R, 5P-10BG

≥ 14 5YR-5R, 10GY-2.5GY, 5P-10BG

9
2, 4 10GY-5R, 10PB-5BG

6, 8, 10, 12, 14 2.5G-5R
≥ 16 2.5G-5GY

Table 1: Radially Interpolated Hue Segments
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Figure 2: Interpolated Ovoids and Radials for Munsell Value 4

2, whose xy coordinates we want to calculate. This colour must lie on the ovoid of
constant chroma C, in the plane with integer value V. pH should be between the two
immediately adjacent hues for which renotation data is available:

p1H1 ≤ pH ≤ p2H2. (17)

Inequality (17) requires a modular numbering scheme for standard Munsell hues,
such as labeling them counterclockwise from 0 to 100, as suggested by Fig. 1 of the
ASTM standard.3

{pH, V, C} is on the ovoid between the two renotation points {p1H1, V, C} and
{p2H2, V, C}. Transform these renotation points to polar coordinates, getting (r1, θ1)
and (r2, θ2), and also to xy coordinates, getting (x1, y1) and (x2, y2). Since hues
correlate approximately with polar angles, interpolate linearly to get the value of θ
that corresponds to {pH, V, C}:

θ =

(
p2H2 − pH
p2H2 − p1H1

)
θ1 +

(
pH − p1H1

p2H2 − p1H1

)
θ2. (18)

If the segment from {p1H1, V, C} to {p2H2, V, C} is interpolated radially, then, by
construction, the corresponding point on the ovoid satisfies Equation (16), so the r
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corresponding to {pH, V, C} is given by

r =

(
θ2 − θ
θ2 − θ1

)
r1 +

(
θ − θ1

θ2 − θ1

)
r2. (19)

If the segment from {p1H1, V, C} to {p2H2, V, C} is interpolated linearly, then the
(x, y) is given by

(x, y) =

(
θ2 − θ
θ2 − θ1

)
(x1, y1) +

(
θ − θ1

θ2 − θ1

)
(x2, y2). (20)

Equation (19) might have to be adjusted for wraparound, say if θ1 were 355o and θ2

were 5o. For radial interpolation, Expressions (18) and (19) can be converted to the
xy coordinates for {pH, V, C}.

Similarly, suppose that {pH, V, C} is a Munsell specification for which V is an
integer and pH is a standard Munsell hue. Choose two chromas that are even integers
and are immediately adjacent to C :

C1 ≤ C ≤ C2. (21)

Then {pH, V, C} lies on the radial containing {pH, V, C1} and {pH, V, C2}, with
corresponding grid points (x1, y1) and (x2, y2). The xy coordinates for {pH, V, C}
can be found by linear interpolation.

Now combine the two previous cases into a more general case, assuming only that
{pH, V, C} is a Munsell specification for which V is an integer. pH is still bounded by
p1H1 and p2H2, and C is bounded by C1 and C2. The subscripted quantities define
a quadrangle, like those appearing in Figure 2. Two sides of the quadrangle are
given by chroma rings, and two are given by hue radials. The Munsell specification
is within this quadrangle, or possibly on its boundary.

The two boundary points on the inner chroma ring correspond to the Table I
values for {p1H1, V, C1} and {p2H2, V, C1}. From these locations, one can interpo-
late the position of {pH, V, C1} on the inner ring. Similarly, one finds the position
of {pH, V, C2} on the outer ring. These two points have the desired hue, pH, so
{pH, V, C} lies on the hue radial joining them. The point (x, y) for {pH, V, C} is
found by linear interpolation along this radial, using the ratios of C, C1, and C2.

3.2 Interpolation for Non-Integer Munsell Values

Section 3.1.2 shows how to interpolate over the Table I data, when the Munsell
value is an integer. The current section shows how to interpolate for a Munsell
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specification {pH, V, C}, where V is not an integer. The approach is similar. As
long as V is between 1 and 10, it can be bounded by two adjacent integer values:

Vfloor < V < Vceil. (22)

Since Vfloor and Vceil are integers, the previous section can be used to find their
xyY coordinates, (xfloor, yfloor, Yfloor) and (xceil, yceil, Yceil).

A natural approach, recommended by Newhall2 (p. 407), Rheinboldt5 (Fig. 2),
Simon, and the ASTM, is linear interpolation over these two xyY conversions. In
those papers, the interpolation was done using V rather than Y, because the quintic
calculation to get Y from V was computationally demanding. Today, the quintic
calculation is insignificant computationally, so it is used. The quantities Y, Yfloor,
and Yceil, are first obtained from V, Vfloor, and Vceil, by Equation (12). Y is the
Y -coordinate for {pH, V, C}. x and y are found by linear interpolation over the Y -
values:

x =

(
Yceil − Y

Yceil − Yfloor

)
xfloor +

(
Y − Yfloor
Yceil − Yfloor

)
xceil, (23)

y =

(
Yceil − Y

Yceil − Yfloor

)
yfloor +

(
Y − Yfloor
Yceil − Yfloor

)
yceil. (24)

4 Renotation Inversion

Section 3 has described how to interpolate from the renotation data in Table I of
Newhall’s paper, to any Munsell specification. Algorithms have been provided for
evaluating the function f, whose three subfunctions f1, f2, and f3, appear in Equa-
tions (9) through (11).

The current section is devoted to the inverse problem: how to go from xyY co-
ordinates to Munsell coordinates, {pH, V, C}. The inverse will use the interpolation
function f iteratively on a set of Munsell coordinates. For a given (x, y, Y ), mul-
tiple potential Munsell specifications will be constructed. When one is found such
that f(pH, V, C) agrees with (x, y, Y ) to within some tolerance, the iterations will
terminate.

This approach differs from that of Newhall, Rheinboldt, and Simon. Rheinboldt
used an exhaustive search to find the quadrangle containing (x, y), for an appro-
priate integer Munsell value. Simon performed a similar exhaustive search for the
quadrangle, but on a carefully chosen region that was much smaller. Newhall rec-
ommended a graphical method, in which the quadrangle would be visually located
on the plots provided. Since Rheinboldt’s and Simon’s quadrangles were based on
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linear rather than radial interpolation, it was not too computationally demanding to
invert linearly to find Munsell hue and chroma.

An example will illustrate the iterative method used in this paper. Let (x, y, Y )
be the point (0.52, 0.27, 11.71), for which the Munsell coordinates are desired.

4.1 Munsell Value Calculation

First, invert Equation (12) to find that the value V is the integer 4. Although the
ASTM recommends an analytic expression from McCamy,10 a lookup table provides
a more accurate inversion, at minimal computational cost. McCamy’s expression
approximates f−1

1 , which should satisfy f−1
1 (f1 (V )) = V and f1

(
f−1

1 (Y )
)

= Y. In
the current example, f1

(
f−1

1 (11.710)
)

= 11.702 when McCamy’s expression is used,
and 11.710 when the lookup table is used.

The lookup table method precomputes Equation (12) at Munsell values, from 0 to
10 in increments of 0.02, producing 501 monotonically increasing luminance factors.
The method finds the two luminance factors immediately bounding a given Y, and
interpolates linearly to get the corresponding Munsell value. To compare the two
methods, the absolute errors,

∣∣f−1
1 (f1 (V ))− V

∣∣ , were calculated for 1000 randomly
chosen Munsell values. (Random selection eliminates any artifacts of the lookup
table.) Figure 3 plots the results.

Figure 3: Errors in McCamy’s Expression, vs Errors in Lookup Table Method

c© 2011 Paul Centore 12
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Figure 4: Target Point and Intermediate Points for Inversion Example

Ideally, the absolute values of the errors should be 0. McCamy’s errors are on
the upper line, not exceeding 0.0035. The lookup table errors, however, are less than
1% of McCamy’s, not exceeding 3.2× 10−5. In any single calculation, both methods
are accurate enough, and agree to at least three significant digits. The lookup table
method was preferred here, so that converting from xyY to Munsell, and then back
to xyY again, would be accurate to four significant digits, which is the maximum
precision of f1, according to Sect. 8.6 of the ASTM standard.3

Now that the Munsell value 4 has been calculated, we can use the ovoids and
radials in Figure 2. Even if V were not an integer, there would still be a set of ovoids
and radials corresponding to V, similar to Figure 2, which we could use. Figure 4
shows the target point as an X. Converting it to polar coordinates around the white
point gives the target coordinates

(rtar, θtar) = (0.215, 347.6o). (25)

By iteration, we will find a Munsell specifcation that f maps to (rtar, θtar).

4.2 The Initial Approximation

Use the CIELAB model (Sect. 10.3 of Ref. 11) to start the iterative process. CIELAB
takes XY Z coordinates as input, so (x, y, Y ) must be first converted to (X, Y, Z),
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using Equations (4) to (6). Two outputs of the CIELAB model are a hue angle (h∗)
and a chroma correlate (C∗). h∗ corresponds roughly to a Munsell hue, as seen in
Fig. 10.4 of Ref. 11. C∗ is usually between 4.5 and 5.5 times the Munsell chroma.
We divide C∗ by 5.5 to get an approximate Munsell chroma. The result in the
case given is 3.2R 4.0/11.5. The Section 3 interpolation evaluates f at this Munsell
specification, producing the xyY coordinates shown as Point 0 in Figure 4. Point 0
is the initial approximation to the target point. Its polar coordinates are

(r0, θ0) = (0.20, 354.6o). (26)

The inversion algorithm will iteratively modify the initial point until it matches
the target point sufficiently closely. The modifications will alternate between hue
(θ) modifications and chroma (r) modifications. An iteration for this algorithm will
be defined as the combination of a hue modification and the consecutive chroma
modification.

4.3 The Hue Modification Step

Start with a θ modification. θ0 is about 7o past θtar. It would be desirable to modify
θ0 by shifting it about 7o clockwise. This operation cannot be performed directly,
because the hue radials curve slightly rather than being straight. From Figure 2, the
hue radial corresponding to 3.2R makes an angle just above 0o at the origin, and
then curves downward to intersect the straight radial of angle 354.6o at the initial
approximation point. The hue radial angle should therefore be adjusted by adding
7o in the clockwise direction.

This addition requires a mapping of hues to hue angles. The mapping is somewhat
arbitrary, but should be used consistently. The current implementation, for example,
defined 5R to have a hue angle of 0o, and 5P to have a hue angle of 315o. The hue 10P,
which is halfway between 5R and 5P in the Munsell system, would then have a hue
angle of 337.5o, and other intermediate hues could be assigned hue angles similarly;
in this case, the hue angle for 3.2R is 352.1o. The mapping of hues to hue angles was
motivated by the chromaticity diagram, and is consistent with Figures 1 through
9 of the renotation.2 The mapping is invertible. Moving 7o clockwise from the hue
angle for 3.2R results in a new hue angle, 345.1o, which corresponds to 1.7R.

The hue of the initial Munsell specification is adjusted, giving a new specification,
1.7R 4.0/11.5, which f maps to (0.18, 350.2o). The target θ value is 347.6o, which is
not between 350.2o and 354.6o. The process of subtracting 7o is repeated, giving a new
hue angle of 338.1o, and a new hue of 0.1R. f maps the specification 0.1R 4.0/11.5 to
(0.17, 345.8o). θtar is between 345.8o and 350.2o, slightly nearer 345.8o. The hue for
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the inversion’s next approximation to the target point is therefore between 0.1R (the
hue for 345.8o) and 1.7R (the hue for 350.2o), but slightly nearer 0.1R. The precise
hue is found by linear interpolation on the hues, giving 0.76R in this instance. The
second Munsell specification in the iteration is 0.76R 4.0/11.5, with polar coordinates

(r1, θ1) = (0.176, 347.6o). (27)

This point appears as Point 1 in Figure 4. Point 0 and Point 1 are on the same
ovoid, but the hue of Point 1 more closely matches the hue of the target point.

The net effect of the hue adjustment step is a Munsell specification whose θ value
is closer to the target θ value than the initial approximation. In the example just
given, two adjustments, of 7o each, were needed to bound θtar in both the clockwise
and counterclockwise directions. In almost all cases, two adjustments are sufficient,
and often only one is necessary; more can be taken if required. Note that the distance
from Point 1 to the target might actually be greater than the distance from Point 0
to the target, so the inversion algorithm is temporarily farther from its target point.
While this happens occasionally, the algorithm generally converges quickly.

4.4 The Chroma Modification Step

The hue modification step adjusted the hue of the current Munsell specification,
without adjusting its chroma. In this step, we adjust the chroma and leave the hue
alone. Geometrically, hue corresponds to θ and chroma corresponds to r, so the
chroma step moves the specification nearer the target, approximately along a radial
from the white point.

The approach is similar to the hue modification step. The current Munsell speci-
fication, given by Equation (27), has an r value, r1, that differs from the value of rtar
in Equation (25). Increase the chroma, 11.5, of the current Munsell specification, by
a factor of

rtar
r1

=
0.215

0.176
= 1.22, (28)

giving a new chroma of 1.22 × 11.5 = 14.0. f(0.71R 4.0/14.0) is (0.210, 346.3o), in
polar coordinates. The new r value is just short of rtar, so multiply the chroma by
1.22 again, getting another Munsell specification, 0.71R 4.0/17.1. This time,

f(0.71R 4.0/17.1) = (0.250, 344.9o). (29)

The desired rtar is 0.215, which is between the r values of 0.210 (corresponding to the
chroma 14.1) and 0.250 (corresponding to the chroma 17.3), but much nearer the first
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r value. By linear interpolation, the chroma corresponding to 0.215 is 14.6. Define
Point 2 in the iterative sequence to be 0.71R 4.0/14.6. Applying the interpolation
function f gives

(r2, θ2) = (0.215, 346.2o). (30)

Point 2 appears in Figure 4. Point 1 and Point 2 are on the same hue radial, but the
chroma of Point 2 is closer to the chroma of the target point.

4.5 Alternating Hue and Chroma Steps, and Termination

Figure 4 shows that Point 2 is already close to the target point. Further iterations
consist of pairs of hue and chroma adjustment. The hue-chroma iterations continue
until the point produced is within a certain tolerance, ε, of the target point. ε is
measured with respect to the Euclidean distance in x and y. In the calculations for
this paper, ε was set to 0.0001. In the current example, the algorithm terminated
after four iterations, giving a Munsell specification of 1.14R 4.00/14.18.

Although not implemented here, other termination criteria could use the Munsell
quantities directly. For example, iterations could be run until three hues, from three
consecutive iterations, all agreed to within two significant digits, thus insuring that
the Munsell colour had a desired hue accuracy. Similar conditions could be placed
on the chromas, or on hues and chromas jointly. (The Munsell value, of course, is
already completely determined by Y.)

4.6 The MacAdam Limits

Not every combination of values for x, y, and Y, determines a physically realizable
colour. The Munsell renotation extends only to the MacAdam limits, which are the
boundaries between realizable and non-realizable colours. The empty areas in Figure
2, for example, are outside the MacAdam limits, so have no corresponding Munsell
coordinates. The inverse renotation is not defined in the empty regions, either. The
inversion algorithm, however, sometimes requires a chroma or hue that is beyond the
MacAdam limits. When needed, the Munsell renotation was extrapolated beyond
the 1943 values, using values provided by the Munsell Color Science Laboratory.12

The MacAdam limits for the inverse renotation were calculated from Table II of
MacAdam’s 1935 paper,13 which lists optimal colours with regard to Illuminant C.
The convex hull of the table entries (when converted to CIE XY Z coordinates), along
with additional entries for theoretical black and white, was taken to define the set of
possible object colours. Any xyY specification which, when converted to an XY Z
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specification, was not within the convex hull, was taken to be outside the MacAdam
limits. The smallest luminance factor for an optimal colour in MacAdam’s table is
10%, which corresponds to a Munsell value of about 3.5, so the inverse renotation
might not reach the MacAdam limits for some lower value entries.

4.7 Inversion Algorithm Performance

In practice, the inversion algorithm usually calculated no more than half a dozen
hue-chroma iterations before successfully terminating. Typically, as in Figure 4,
very good convergence had already occurred by the first or second iteration. In
general, each iteration seemed to reduce the Euclidean distance between the target
colour and the new estimate by nearly an order of magnitude. No attempt was made
to optimize the algorithm. The inversion algorithm can be run from the command
line in Matlab or Octave. If one enters

> MunsellSpecification = xyYtoMunsell(0.52, 0.27, 11.71)

then the routine returns

MunsellSpecification = 1.14R4.00/14.18.

Conversely, entering

> [x y Y] = MunsellToxyY(‘1.14R4.00/14.18’)

returns

x = 0.51999,
y = 0.27002,
Y = 11.701.

Apart from running cases one at a time on the command line, Octave scripts can be
written that will automatically run many cases, and record the output.

From one point of view, the inversion algorithm is irrelevant. If f({pH, V, C})
agrees with the desired (x, y, Y ), to within an acceptable tolerance, then the inversion
has been successful, regardless of the algorithm used. As implemented, the inver-
sion routine, xyYtoMunsell.m, makes numerous calls to the interpolation routine,
MunsellToxyY.m, but not vice versa. If the interpolation method were modified,
the inversion routine would adapt automatically, without requiring any modification
itself. The important question is therefore how to extend the Munsell renotation
from the colours listed in Table I of the 1943 paper,2 to unlisted colours.
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x y Y
Previous Current Hue Value Chroma
Inversion Inversion Diff. Diff. Diff.

S
im

o
n

&
F
ro

st

0.1988 0.1930 8.39 4.53PB 3.39/7.86 4.58PB 3.43/7.76 0.05 0.04 0.10
0.3352 0.2404 7.67 1.09RP 3.24/5.91 1.13RP 3.28/5.94 0.04 0.04 0.03
0.4784 0.3095 11.05 4.24R 3.85/8.72 3.89R 3.90/8.86 0.35 0.05 0.14
0.4385 0.4824 28.63 7.88Y 5.88/8.68 7.81Y 5.94/8.74 0.07 0.06 0.06
0.5190 0.3695 15.13 1.36YR 4.44/9.35 1.12YR 4.49/9.41 0.24 0.05 0.06
0.5184 0.3573 6.20 1.38YR 2.92/6.90 1.10YR 2.95/6.99 0.28 0.03 0.09
0.2687 0.2842 13.54 0.30PB 4.23/2.59 0.59PB 4.27/2.59 0.29 0.04 0.00
0.3036 0.3747 3.18 10.00GY 2.02/2.52 0.23G 2.05/2.54 0.23 0.03 0.02
0.3517 0.3492 12.76 0.42Y 4.11/1.54 0.42Y 4.16/1.54 0.00 0.05 0.00
0.3421 0.3252 18.55 9.37R 4.86/1.75 9.29R 4.92/1.76 0.08 0.06 0.01
0.3767 0.3546 12.88 7.19YR 4.13/2.45 6.84YR 4.18/2.48 0.35 0.05 0.03
0.2697 0.2640 14.89 6.63PB 4.41/3.69 6.63PB 4.46/3.66 0.00 0.05 0.03
0.2882 0.3492 28.41 6.18G 5.86/3.28 6.24G 5.92/3.30 0.06 0.06 0.02
0.3918 0.3800 30.97 0.28Y 6.08/4.30 9.83YR 6.14/4.36 0.45 0.06 0.06
0.3099 0.3153 16.02 N 4.56/ N 4.61/ - 0.05 -
0.2665 0.3291 25.71 4.14BG 5.61/3.82 4.13BG 5.67/3.84 0.01 0.06 0.02
0.3952 0.3084 8.75 2.36R 3.45/4.26 2.30R 3.50/4.20 0.06 0.05 0.06

A
S
T

M

0.2395 0.2905 59.53 3.9B 8.11/6.6 4.00B 8.11/6.59 0.10 0.00 0.01
0.3434 0.3025 80.84 5.9RP 9.19/6.0 6.08RP 9.19/6.63 0.18 0.00 0.63
0.4183 0.3790 72.22 5.4YR 8.78/7.6 5.41YR 8.78/7.58 0.01 0.00 0.02
0.4690 0.4953 50.30 5.6Y 7.56/13.7 5.57Y 7.56/13.63 0.03 0.00 0.07

W
a
ll
k
il
l

0.3434 0.3025 80.84 5.9RP 9.19/5.60 6.08RP 9.19/6.63 0.18 0.00 1.03
0.1600 0.1900 1.79 8.34B 1.40/5.38 8.19B 1.40/5.21 0.15 0.00 0.17
0.2700 0.3100 7.76 8.53BG 3.30/2.04 8.53BG 3.30/2.00 0.00 0.00 0.04
0.4200 0.3600 19.77 2.75YR 5.06/5.28 2.77YR 5.06/5.26 0.02 0.00 0.02
0.2800 0.2500 31.62 1.99P 6.20/6.71 1.96P 6.20/6.67 0.03 0.00 0.04
0.3200 0.5400 47.86 9.29GY 7.40/13.79 9.24GY 7.40/13.65 0.05 0.00 0.14

Table 2: Comparative Output of Different Inversion Algorithms

Table 2 compares inversions calculated by the current method, with inversions
calculated by previous methods. The first 17 examples are taken from Table I of
Simon & Frost;6 the next four are from Table 4 of the ASTM standard.3 The final
six were obtained from Wallkill.7 The Wallkill program was run with Illuminant C
and the 1931 2o observer selected. In addition, the box marked “PWD” was checked;
running without the PWD box checked seemed to make Wallkill use Newhall’s quin-
tic, while running with it checked seemed to make it use the ASTM quintic. For each
xyY combination, the table lists the Munsell specification calculated by a previous
inversion, and the specification calculated by the current inversion. The final three
columns of the table list the differences in hue, value, and chroma, between the two
specifications.

There is a slight but consistent value difference between Simon’s results and the
current results. This difference occurs because Simon used the inverse of Newhall’s
quintic, rather than the updated ASTM quintic. The difference is more pronounced
when Munsell value is higher; Simon’s examples do not exceed 6 in value, so the
difference is not great. Since Simon interpolates between value planes, a difference in
value leads to differences in hue and chroma. While the chroma differences in Simon’s
cases would probably not be discernible, some of the hue differences, exceeding a
quarter of a hue step, would be.

Table 3 shows an attempt to reproduce Simon’s results, by modifying the current
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x y Y
Graphical Simon’s Current Modified
Inversion Inversion Inversion Inversion

0.1988 0.1930 8.39 4.72PB 3.38/7.90 4.53PB 3.39/7.86 4.58PB 3.43/7.76 4.59PB 3.38/7.78
0.3352 0.2404 7.67 1.15RP 3.24/5.95 1.09RP 3.24/5.91 1.13RP 3.28/5.94 1.13RP 3.24/5.93
0.4784 0.3095 11.05 4.00R 3.85/8.89 4.24R 3.85/8.72 3.89R 3.90/8.86 3.91R 3.85/8.79
0.4385 0.4824 28.63 7.79Y 5.88/8.68 7.88Y 5.88/8.68 7.81Y 5.94/8.74 7.82Y 5.88/8.67
0.5190 0.3695 15.13 1.12YR 4.44/9.40 1.36YR 4.44/9.35 1.12YR 4.49/9.41 1.10YR 4.44/9.41
0.5184 0.3573 6.20 1.14YR 2.92/6.93 1.38YR 2.92/6.90 1.10YR 2.95/6.99 1.11YR 2.92/6.97
0.2687 0.2842 13.54 0.77PB 4.23/2.38 0.30PB 4.23/2.59 0.59PB 4.27/2.59 0.59PB 4.23/2.58
0.3036 0.3747 3.18 0.38G 2.02/2.55 10.00GY 2.02/2.52 0.23G 2.05/2.54 0.22G 2.02/2.54
0.3517 0.3492 12.76 0.50Y 4.11/1.50 0.42Y 4.11/1.54 0.42Y 4.16/1.54 0.42Y 4.11/1.54
0.3421 0.3252 18.55 9.37R 4.86/1.82 9.37R 4.86/1.75 9.29R 4.92/1.76 9.27R 4.86/1.74
0.3767 0.3546 12.88 6.60YR 4.13/2.51 7.19YR 4.13/2.45 6.84YR 4.18/2.48 6.82YR 4.13/2.47
0.2697 0.2640 14.89 6.26PB 4.41/3.51 6.63PB 4.41/3.69 6.63PB 4.46/3.66 6.65PB 4.41/3.65
0.2882 0.3492 28.41 5.93G 5.86/3.25 6.18G 5.86/3.28 6.24G 5.92/3.30 6.26G 5.86/3.29
0.3918 0.3800 30.97 9.97YR 6.08/4.48 0.28Y 6.08/4.30 9.83YR 6.14/4.36 9.83YR 6.08/4.34
0.3099 0.3153 16.02 N 4.56/ N 4.56/ N 4.61/ N 4.56/
0.2665 0.3291 25.71 4.03BG 5.61/3.82 4.14BG 5.61/3.82 4.13BG 5.67/3.84 4.11BG 5.61/3.83
0.3952 0.3084 8.75 2.15R 3.45/4.27 2.36R 3.45/4.26 2.30R 3.50/4.20 2.29R 3.45/4.21

Table 3: Comparison with Simon’s Output

inversion. The following changes were made: the value conversion used Newhall’s
quintic instead of the ASTM quintic, interpolation was done over Munsell value
rather than over Y, and all interpolations were linear rather than radial. Table 3
also shows the results of graphical inversion, taken from Table I of Simon’s 1987
paper. In theory, Simon’s inversion should agree with the modified inversion. In
fact, Table 3 shows significant discrepancies. Although the Munsell values agree (as
they must), the modified inversion matches the graphical inversion in hue better
than Simon’s inversion, in all but three cases. In the third row, for example, the
modified and graphical inversions differ in hue by 0.09 Munsell steps, while Simon’s
and the graphical inversion differ by 0.24 Munsell steps. Chroma discrepancies follow
a similar pattern, though not as pronounced. The inability to reproduce Simon and
Frost’s results probably cannot be explained without a source code comparison; a
numerical implementation difference might be producing the differences seen in the
table.

By contrast with Simon’s results, there is much less difference between ASTM’s
results, Wallkill’s result, and the current result. The Munsell values are identical
because the ASTM algorithm, and presumably Wallkill’s algorithm, both use Mc-
Camy’s analytic approximation to calculate V from Y, and the current lookup table
approach produces only negligibly different results. In three of the ASTM cases, both
hue and chroma differences are slight. They probably result from the fact that ASTM
interpolates over V, while the current method interpolates over Y, as explained in
Section 3.2. In addition, of course, the graphical interpolations recommended by the
ASTM introduce some error, which can account for the differences.

One striking difference occurs when xyY = (0.3434, 0.3025, 80.84). In this case,
the chroma difference is 0.63. Technically, the ASTM algorithm should not be able
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to invert this xyY combination. Sect. 8.1 of the ASTM standard3 gives inversion
instructions resulting in a Munsell value of 9.19. Sect. 8.2 then says to estimate hue
and chroma at (x, y), from the figures for the bounding values, 9 and 10. There
is, however, no figure corresponding to value 10. Even if there were, it would be
impossible to estimate hue and chroma from it, as all hues and chromas at value
10 are mapped to one point, the Illuminant C chromaticity point. While there are
geometrically reasonable inversion methods for Munsell values greater than 9, the
ASTM does not specify any, so their conversion, and its difference from the open-
source conversion, will be disregarded.

The table shows a more serious discrepancy when Wallkill is run on this case.
The current algorithm’s chroma differs from Wallkill by 1.03. Wallkill’s chroma
also differs from the ASTM chroma by a significant 0.40. To investigate the effect of
interpolating over Y, versus interpolating over V, the current algorithm was run again,
interpolating over V rather than Y. The new specification was 6.10RP 9.19/6.75, an
even larger difference. Since the Wallkill algorithm is unknown, this discrepancy is
hard to explain. When a colour’s Munsell value exceeds 9, interpolation is tricky,
because there is only one data point, ideal white, of value 10. A radically different
interpolation scheme on Wallkill’s part, or additional renotation data, might explain
the discrepancy, but a definite answer would require information about the Wallkill
algorithm. As a caution, one could restrict the current inversion to values no greater
than 9. The current inversion will not return an answer for values less than 1, so
there are no similar concerns for very dark values.

Three of the remaining five Wallkill examples show very good agreement, with
differences less than 0.05 for both hue and chroma. Algorithm differences account
for the moderately large differences seen in the other two examples. The current
algorithm was rerun on the case xyY = (0.16, 0.19, 1.79), but modified so that inter-
polation was done over Munsell value, instead of over luminance factor; the result
was 8.23B 1.40/5.34, reducing the chroma difference to 0.04, and the hue difference
to 0.11. The last example on the table is probably due to differences in the ovoid
approximation. The ovoid segments between 7.5GY and 10 GY, for values between
7 and 8, and chromas greater than 12, show high curvature. While a radial interpo-
lation of these segments, which is used here, is preferable to a linear interpolation,
the Wallkill program might use other methods, such as splines or Bézier curves, to
match the plots in the original paper.2 A definite answer would require knowledge
of the Wallkill algorithm. In general, however, the ovoids’ form between data points
comes from an ad hoc visual estimate, rather than a calculation. Considering the
high curvature in this case, a difference of 0.14 chroma steps is within reasonable
estimation error.
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In general, for Munsell values between 1 and 9, the current algorithm’s hues and
chromas, as shown in Table 2, differ by less than 0.1 from the two most recent al-
gorithms, and internal details of the algorithms can explain most of the differences.
Human wavelength discrimination14 for monochromatic stimuli in the visual spec-
trum, between 400 and 700 nm, is at best about 1 nm, and often considerably worse.
A human could therefore distinguish no more than 300 hues in the visible spectrum.
The visible spectrum extends about three quarters of the way around the Munsell
hue circle, which is evenly spaced perceptually, so a human could distinguish no
more than 400 Munsell hues. One four-hundredth of the hue circle corresponds to
a Munsell hue difference of 0.25, so the Table 2 hue differences are imperceptible.
Similarly, chroma discrimination data14 shows that the chroma differences are also
imperceptible.

Since the eye cannot distinguish the results of current algorithms, further al-
gorithm refinement would provide limited benefit. The main contribution of the
algorithm presented here is not its details, but its openness. It is hoped that other
colour researchers will use the implementation freely, and adapt it to their needs.
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