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Abstract

Optimal colours for human vision occur on the boundary of a three-dimensional
object-colour solid, and result from optimal reflectance spectra, that take on only the
values 0 and 1, with at most two transitions between those values. Different illuminants
lead to different solids. If there are two illuminants and a single sensing device, then
we can construct a six-dimensional double object-colour solid by concatenating colour
signals from both illuminants. Colours on the boundary of a double-object solid, and
the spectra that generate them, can also be called optimal. This paper shows that, while
optimal spectra for double solids take on only the values 0 and 1, there is no maximum
number of transitions between those values: given a device, we can always construct two
illuminants such that the resulting double object-colour solid has an optimal reflection
spectrum with as many transitions as desired.

1 Introduction

Object-colour solids ΩI , consisting of all the colour outputs that physical objects can produce
by reflecting a given illuminant I, occur when studying human colour vision. Formally, a
physical object has some reflectance spectrum ρ, which is a function with values between 0
and 100%, or equivalently 0 and 1, over the visible spectrum; ρ(λ) gives the percentage of
incoming light of the wavelength λ that the object reflects. A monochromatic reflectance
spectrum ρλ is 1 at λ (or more commonly, is 1 on the waveband containing λ in some
discretization of the visible spectrum), and 0 elsewhere. For a given illuminant I, the colour
signal map Φ, from the set χ of all reflectance spectra, to the colour output space, which is
a subset of R3, sends ρ to its colour output, when illuminated by I. Each coordinate of the
colour output is given by a wavelength-dependent response function. The object-colour solid
ΩI for I is then the subset Φ(χ) of R3. Optimal colours are those that occur on the boundary
of an object-colour solid. In 1920, Erwin Schrödinger1showed that any optimal colour for
human vision results from an optimal reflectance spectrum which takes on only the values 0
and 1 over the visible spectrum, with at most two transitions between those values.

If the human vision system (HVS) is considered as a special case of an imaging device,
then the analogue of a human object-colour solid is an illuminant gamut, consisting of all
the RGB outputs that the device produces when imaging physical objects under a given
illuminant. An interesting situation occurs in computational colour constancy when a single
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device images the same scene twice, but under two different illuminants. Then each illu-
minant has its own object-colour solid or illuminant gamut. To analyze this case, Eugene
Allen (p. 38 of Ref. 2) suggested concatenating colour outputs from both illuminants into a
six-dimensional hypervolume, which we will call a double object-colour solid. Formally, let
Φ1 and Φ2 be the colour signal maps for I1 and I2. Then the range of the map Υ : χ −→ R6

given by

Υ(ρ) = (Φ1(ρ); Φ2(ρ)) (1)

is a sensor’s double object-colour solid for I1 and I2.
Just like single object-colour solids, the reflectance spectra that produce boundary points

on the double solid will be called optimal spectra. A recent paper by Logvinenko et al.3

parametrized optimal spectra for a double object-colour solid with Schrödinger-like functions
that took on only the values 0 and 1, but that allowed up to five transitions instead of two.
While a reasonable modeling decision (since a six-dimensional solid has a five-dimensional
boundary), a natural question is whether there is in fact some maximum number of transi-
tions.

The current paper provides a negative answer. While it can be shown that only the
values of 0 and 1 occur, it will also be proven that, for a given device, with a fine enough
discretization of the visible spectrum, two illuminants can always be found for which the
number of transitions required for some optimal reflectance spectrum is as large as desired.

The proof in this paper relies on the fact that the object-colour solid ΩI is the Minkowski
sum of the sensor’s spectrum locus vectors under I,4 where the spectrum locus vectors
are Φ(ρλ) for the monochromatic spectra ρλ. This zonal structure leads to a simple, two-
dimensional method of determining optimal reflectance spectra for an arbitrary sensor from
its response functions. Extend all the locus vectors indefinitely, and cut them with a plane
in R3, creating a chromaticity diagram. For convenience, the plane should cross all three
axes at positive values. The resulting diagram is two-dimensional, and one can choose some
coordinate system; the chromaticity of a point in the diagram is then identical with its
coordinate pair.

For any reflectance spectrum ρ, Φ(ρ) is a vector in R3 that can be lengthened or shortened
until it lies exactly on some point of the chromaticity diagram; the chromaticity of ρ is then
defined to be the chromaticity of that point. If ρλ is monochromatic, then this paper will refer
to the corresponding point in the chromaticity diagram as the monochromatic point for λ.
Further geometric understanding results from considering an arbitrary reflectance spectrum
as the sum of monochromatic reflectance spectra; then the linearity of Φ implies that the set
of physically possible chromaticities is the convex hull of the monochromatic points. Unlike
an object-colour solid, a device’s chromaticity diagram depends only its response functions,
and not on the illuminant.

The optimal spectra for an object-colour solid can be found directly4 from the chromatic-
ity diagram by the following procedure:

1. Indicate all the monochromatic points in the chromaticity diagram.

2. Draw an arbitrary straight line anywhere in the chromaticity diagram.

3. Identify all the monochromatic points on one side of that line, and their wavelengths
(or, in a discretization, the wavebands containing those wavelengths).
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4. The reflectance spectrum which takes on the value 1 on those wavebands, and the value
0 elsewhere, is optimal.

This construction is not just sufficient but also necessary: every optimal spectrum results
from at least one such line.

In the horseshoe-shaped chromaticity diagram for human vision, the monochromatic
points appear, ordered by wavelength, around the boundary. A line through the horseshoe
divides those points into two sets. The reflectance spectrum that is 1 on the wavelengths
on one side, and 0 on the wavelengths on the other side, is optimal. The complementary
spectrum, that is 0 on the first side and 1 on the second side, is also optimal. Both these
spectra have Schrödinger form, as they must.

This construction can be reinterpreted in terms of linear algebra. Since a chromaticity
diagram is a section of R3, a line in the diagram can be extended to a unique plane through
the origin in R3. The plane through the origin can be taken to be the kernel of a linear
functional F, unique up to a multiplicative constant, on the three-dimensional colour space.
The planar kernel divides the space into a positive side, where F takes on positive values,
and a negative side, where it takes on negative values. The two sides of the line in the
chromaticity diagram correspond to this positive/negative division of R3. The boundary of
a zonohedron can be approximated by its vertices, and each vertex is the sum of all the
locus vectors that fall on one side of a plane through the origin in the colour space.5 The
monochromatic points for those vectors also appear on one side of the line that results when
the planar kernel intersects the chromaticity diagram, so the two- and three-dimensional
constructions are equivalent.

Generalizing the constructions from a single object-colour solid to a double object-colour
solid leads to a proof of the paper’s main result. A double object-colour solid results from
concatenating two ordinary solids for the same sensor, but for different illuminants, I1 and
I2. The locus vectors for this map are still the images of monochromatic spectra, but now
they are six-dimensional instead of three-dimensional. The double object-colour solid is the
Minkowski sum of the six-dimensional locus vectors. A boundary point can be constructed
by summing all the locus vectors on which a linear functional F : R6 −→ R takes positive
values. The concatenation allows us to decompose F into two other functionals

F = F1 + F2, (2)

where F1 is 0 on the last three coordinates of R6, and F2 is 0 on the first three coordinates.
Then F1 can be seen as a linear functional on the three-dimensional set of locus vectors for
I1, while F2 is a linear functional on the three-dimensional set of locus vectors for I2. The
kernel of F1 produces a line in the chromaticity diagram for I1, and all the monochromatic
points on one side of that line take on positive values; the points on the other side take on
negative values. A similar statement holds for F2 in the chromaticity diagram for I2. Since
the chromaticity diagrams for I1 and I2 are identical, however, we can draw both lines in one
chromaticity diagram, and ask about the signs of the monochromatic points when F1 and F2

are summed to produce F. If a particular monochromatic point is positive for both F1 and
F2, then it is also positive for their sum F. Similarly, a point that is negative for F1 and F2

is negative for F. These statements hold regardless of how strong or weak the illuminant is
at the wavelength of interest.
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A monochromatic point of wavelength λ, however, might be positive on F1 and negative
on F2, or vice versa, in which case its value on F does depend on I1(λ) and I2(λ). The
paper will show that choosing I1(λ) and I2(λ) appropriately allows us to make F (Υ(ρλ))
positive or negative as desired. Since F is arbitrary, we can choose F1 and F2 as desired, and
thus, assuming a fine enough discretization of the visible spectrum, produce a large number
of monochromatic points that are positive on F1 and negative on F2 (or vice versa). By
assigning appropriate values to the illuminants at the wavelengths for those points, we can
produce an optimal reflectance spectrum that is 1 at some wavelength or waveband λ, 0
at the next waveband, then 1 at the waveband after that, and so on in alternating fashion.
Such a spectrum can transition between 0 and 1 as many times as desired. This construction
proves the paper’s negative result: there is no maximum number of transitions for a double
object-colour solid.

The paper is organized as follows. Minkowski sums and zonal structures are described
first, to lay the mathematical groundwork. Next, standard geometric colour constructions
such as spectrum locus vectors and colour signal maps are defined, and their relevant prop-
erties are stated. Double object-colour solids, the focus of this paper, are then defined, and
their structure is related to previously established concepts. With these mathematical con-
cepts in place, the paper’s main result, that an optimal reflectance spectrum for a double
object-colour solid has no maximum number of 0-1 transitions, is proven with an easily vi-
sualized two-dimensional chromaticity diagram. The paper concludes with a discussion of
possible applications and a summary.

2 Zonotopes and The Minkowski Sum

2.1 The Minkowski Sum

The Minkowski sum, also called the vector sum or linear sum, of two sets A and B in Rn, is
defined as

A⊕B = {a+ b|a ∈ A, b ∈ B}. (3)

This sum can be extended in the obvious way to any number of sets, and is readily seen to
be commutative and associative, so that the order of the summands is immaterial. When
all the summands in a Minkowski sum are convex, then the sum itself is also convex (Sect.
2.2.1 of Ref. 4).

Low-dimensional spaces offer appealing visual interpretations of Minkowski sums. In R2,
for instance, A and B can be pictured as two flat shapes. The shape of their Minkowski
sum, A ⊕ B, is the shape consisting of all the area swept out by A when a fixed point a1
of A slides over B, in the sense that, for each b in B, a translated copy of A is placed such
that a1 lies directly on top of b; the Minkowski sum is the union of all such copies. (While
this method constructs the shape of A ⊕ B, it will likely not give the correct location of
A ⊕B, which could be very far from both A and B.) A similar sliding construction works
for polyhedra in R3, and indeed for analogous sets in any dimension. See Chap. 2 of Ref. 4
for some detailed examples.
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2.2 Zonotopes

Zonotopes, known as zonohedra in three-dimensional space, are a special case of Minkowski
summation, in which all the summands are line segments which start at the origin. Such
a line segment can be naturally represented by the vector overlaying it, so a zonotope is a
Minkowski sum of generating vectors, or just generators. To form the Minkowski sum of a
set of the generators v1,v2, . . . ,vn, choose a point a1 in the first segment, another point a2
in the second segment, and so on, and add them as vectors; the Minkowski sum is the set
of all such sums of points. Since ai belongs to the ith line segment, which extends from the
origin to the vector vi, we can write

ai = αivi, (4)

for some αi between 0 and 1. As a whole, the segments generate the zonotope Z given by

Z =

{ n∑
i=1

αivi

∣∣∣0 ≤ αi ≤ 1 ∀i
}
. (5)

Even though line segments are one-dimensional sets, the zonotope they generate can,
and likely will, be multi-dimensional. The Minkowski sum of two linearly independent vec-
tors, for example, is a parallelogram, and the sum of three linearly independent vectors is a
parallelepiped. The construction of zonotopes gives them some characteristic properties: a
zonotope is a convex, centrally symmetric polytope. If all the generators have non-negative
components, as will happen in our colour constructions, then the origin is a vertex; a ter-
minal vertex, created by summing all the generators, is symmetric to the origin about the
zonotope’s center.

A vertex of a zonotope also has a special form:5 it can be written as the sum of all
generating vectors that lie on one side of a hyperplane H through the origin:

vertex =
N∑
i=1

εivi

∣∣∣εi = 1(if vi is on the given side of H) or 0 (otherwise), (6)

Conversely, suppose we have a hyperplane through the origin. Then the sum of all the
generators on one side of the hyperplane is a vertex; the sum of the generators on the other
side is also a vertex, that is diametrically opposite the first vertex. Rather than use a
hyperplane, one can use a linear functional F, unique up to a multiplicative constant, whose
kernel is that hyperplane: F (H) = 0. Then all the generators on which F is positive lie on
one side of the plane, and all the generators on which F is negative lie on the other side.
Given any functional F, then, the sum of all the positive generators is a vertex, and the sum
of all the negative generators is the diametrically opposite vertex. Formally,

first vertex =
∑

vi

∣∣∣F (vi) > 0, (7)

second vertex =
∑

vi

∣∣∣F (vi) < 0, (8)

Since such a functional can be found for any vertex, we have a convenient way of character-
izing a zonotope’s vertices, which will be used later in the paper.
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3 Geometric Objects of Colour Science

In the setting of interest for this paper, a scene consisting of various physical objects is lit by
some consistent illumination and imaged by a sensor with a three-dimensional output. The
term “object” should be understood broadly, to include any physical surface; even a lawn,
for instance, would be considered an object for our purposes. Likewise the term “sensor” or
“device” should also be construed broadly, to include even the human visual system. This
section will model the basic elements of the setting of interest as functions over the visible
spectrum, and use the previous section to make some relevant zonohedral constructions.

3.1 Discretization

Colour applies to the visible electromagnetic spectrum, whose wavelengths vary from about
400 and 700 nm. Practical applications typically discretize the spectrum into wavebands
of equal width. A common choice is 31 10-nm bands. A function of wavelength, such as
a reflectance spectra or a light’s spectral power distribution (SPD), is then defined by a
table over the finite set of wavebands. A waveband is often indicated by a representative
wavelength; for instance, the waveband between 435 and 445 nm could be represented by
the wavelength 440 nm.

Though they calculate in discrete terms, workers often think in continuous terms. The
continuous case is the limit of the discrete case as the number of wavebands increases without
bound and wavebands become increasingly narrow. As we will see later, wavebands often
lead to generating vectors, which produce zonotopes. As the discretization becomes finer,
the number of generators increases, but the magnitude of each generator decreases, and the
zonotope as a whole does not change shape much. In the limit, the zonotopes converge
to a convex, centrally symmetric zonoid.6 While a zonotope is a polytope with corners and
edges, a zonoid can be smooth, with no corners or edges. This paper will consistently assume
an evenly spaced discretization over the visible spectrum, although with arbitrary narrow
wavebands, so only the discrete case is needed.

3.2 Illuminants

A physical light can be described mathematically by a spectral power distribution (SPD),
which is a function that specifies the power contained in each waveband. For instance, an
SPD might specify 5 Watts in the waveband between 575 and 585 nm, 7 Watts between 585
and 595, and so on. An SPD can be broken down into a shape and a magnitude. If one
SPD is a scalar multiple of another, then their magnitudes differ, but their shapes, which
define the relative amount of power in each waveband, are the same. An illuminant I(λ) is
a relative, rather than an absolute, SPD, and conveys shape rather than magnitude. Often
a single light source, such as the sun, emits light with an SPD of a certain shape. The
sun might light some objects frontally, while lighting other objects at more raking angles,
so different objects are lit with different intensities. These differences, however, change the
magnitude of the SPD, but not its shape, so an illuminant function is a natural descriptor.
To avoid degenerate cases, this paper will make the further assumption, satisfied by natural
lights, that all illuminants are positive over the visible spectrum,
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3.3 Reflectance Spectra and Object Colours

Unlike a light source, a typical physical object reflects light produced elsewhere, rather than
emitting light of its own. This paper deals with the common situation where light from some
source falls on an object, reflects off that object, and then reaches a sensing device. The SPD
of the light at the source is consistent with some illuminant I(λ). Reflecting off the object
modifies that SPD, and the modified SPD arrives at the sensor. A function ρ called the
reflectance spectrum describes the modification. For each waveband, with a representative
λ, the value ρ(λ) is between 0 and 100%, or equivalently between 0 and 1, and gives the
percentage of the incoming light, in that waveband, that the object reflects diffusely. The set
of all reflectance spectra will be denoted χ. Mathematically, the modified SPD is ρ(λ)I(λ),
the pointwise product of an illuminant and a reflectance spectrum.

An arbitrary reflectance spectrum ρ can be written as a linear, indeed a zonal, combina-
tion of monochromatic reflectance spectra. For a given discretization, define

ρi(λ) =

{
1, if λ is in the ith waveband
0, otherwise.

(9)

Then ρ can be written as

ρ =
∑
i

αiρi, (10)

where each coefficient αi is between 0 and 1. The set χ of all spectra is thus a zonotope,
whose generating vectors are the monochromatic spectra.

An object colour is a colour output that can result when a light source reflects off an
object. The set of object colours is a proper subset of the larger set of light-source colours.
Two different illuminants I1 and I2 give rise to two different sets of object colours, which we
will soon see are both zonohedra, called object-colour solids, in a sensor’s output space.

3.4 Colour Signal Maps

Colour information results when light impinges on a sensing device, such as the HVS or
a typical camera, which responds by producing a three-component vector, called a colour
signal, in R3. In this paper, sensors be assumed to be linear, in the sense that each coordinate
in the output vector is a linear transformation of the incoming SPD.

For human vision, the 1931 Standard Observer7 defined by the Commission Internationale
de l’Éclairage (CIE) specifies a colour signal with three output coordinates denoted X, Y,
and Z, which are calculated from the CIE colour-matching functions x̄(λ), ȳ(λ), and z̄(λ),
over the visible spectrum. When a light consistent with illuminant I(λ) reflects off an object
with reflectance spectrum ρ(λ) and reaches a human eye, the CIE colour signal is given by:

X =
∑
λ

ρ(λ)I(λ)x̄(λ), (11)

Y =
∑
λ

ρ(λ)I(λ)ȳ(λ), (12)

Z =
∑
λ

ρ(λ)I(λ)z̄(λ), (13)
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where λ takes on all the values in a set of representative wavelengths for some discretization.
A camera’s colour signal coordinates are usually denoted R, G, and B, for red, green, and
blue, and are similarly calculated from three response curves r1(λ), r2(λ), and r3(λ), which
vary from device to device:

R =
∑
λ

ρ(λ)I(λ)r1(λ), (14)

G =
∑
λ

ρ(λ)I(λ)r2(λ), (15)

B =
∑
λ

ρ(λ)I(λ)r3(λ). (16)

In the limit, as the discretization becomes increasingly fine, the discrete sums in Equations
(11) through (16) approach integrals over the visible spectrum.

Regardless of the sensor, the colour signal map for a particular illuminant can be written
as a function Φ : χ→ R3, from the set χ of reflectance spectra to the sensor’s colour output
space, which is a subset of R3. For a given artificial sensing device and illuminant, the
codomain Φ(χ) of the set of all object colours is called an illuminant gamut. An illuminant
gamut is a subset of R3, and the same sensor will have different illuminant gamuts for
different illuminants. When the sensor is the human visual system, the term object-colour
solid is used in place of illuminant gamut; for simplicity, we will use the former term for both
cases. Like an artificial sensor, human vision has different solids for different illuminants.
Object-colour solids will soon be shown to be zonohedra, whose zonal structure will be used
in proving the paper’s main result.

3.5 The Spectrum Locus

A spectrum locus vector is the image of a monochromatic spectrum ρi under a colour signal
map Φ. Formally, the ith spectrum locus vector is given by

Φ(ρi) = (I(λi)r1(λi), I(λi)r2(λi), I(λi)r3(λi)) (17)

= I(λi) · (r1(λi), r2(λi), r3(λi)) (18)

= I(λi) · σ(λi), (19)

where λi is a representative wavelength for the ith waveband, and we have introduced the
notation σ(λi) = (r1(λi), r2(λi), r3(λi)). The set of all such vectors is called the spectrum
locus. Figure 1 shows an example. A few of the locus vectors have been labeled with
representative wavelengths. The axes would be X, Y, and Z, for human vision, but some
other R, G, and B for an artificial sensor.

Equation (18) shows that the magnitude of a spectrum locus vector depends only on the
illuminant, while its direction depends only on the sensor’s response curves. For a given
sensor and discretization, then, a spectrum locus vector might lengthen or contract if the
illuminant changes, but will not change the direction in which it is pointing.

Together, Equations (10) and (18) demonstrate the zonohedral structure of an object-
colour solid, which consists of all vectors of the form Φ(ρ), for an arbitrary reflectance
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Figure 1: A Spectrum Locus

spectrum ρ. Formally, write

Φ(ρ) = Φ

(∑
i

αiρi

)
(20)

=
∑
i

αiΦ(ρi) (21)

=
∑
i

αi · I(λi) · σ(λi). (22)

Every coefficient αi is between 0 and 1, so Equation (22) expresses Φ(ρ) as a zonal com-
bination of the spectrum locus vectors given by Equation (18). The object-colour solid
depends on the illuminant because the magnitude of a spectrum locus vector varies with the
illuminant, even though the response vectors σ(λi) do not.

As mentioned earlier, a zonohedron, which is always a polyhedron, can approach a zonoid,
which can be a smooth solid, as the number of generators increases, as long as the generators
maintain their approximate directions and shrink appropriately in magnitude. Suppose that
the discretization used when constructing an object-colour solid becomes finer, perhaps with
wavebands shrinking from 10 nm to 5 nm. Then there will be twice as many wavebands,
but any light that reaches a sensor will have about half the power per waveband that it
had previously. As a result, there will be twice as many spectrum locus vectors in about the
same directions, at about half their previous magnitudes. The zonohedral object-colour solid
will have approximately the same size, shape, and terminal point, but many more vertices,
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and edges that are about half their previous lengths. As the wavebands become infinitely
fine, most or all of the vertices and edges will disappear, leaving a smooth zonoid. Although
this paper will restrict itself to the discrete formulation, which is sufficient to prove the
main result, the continuous formulation will be occasionally considered as a conceptually
important limiting case.

3.6 The Spectrum Cone and Chromaticity Diagram

The magnitudes of the spectrum locus vectors in Figure 1 depend on the illuminant, but
other useful constructions result from extending each locus vector to infinity, producing a
set of rays that starts at the origin. The convex hull of the rays is called the spectrum cone.
For human vision, the rays all lie on the boundary of the cone, but, for an arbitrary sensor,
some of the rays could lie inside. The spectrum cone is generated solely from the response
curves, and is independent of the illuminant, because it needs only the directions of the locus
vectors and not their magnitudes. Note that the spectrum cone usually lies in the positive
octant of R3, because output coordinates, both XY Z and RGB, are typically positive.

An instructive picture results from slicing the cone with a plane, producing a profile.
Many planes will work, although the chosen plane should intersect every ray in the cone.
This paper uses the standard plane X +Y +Z = 1, or equivalently R+G+B = 1. Figure 2
shows the locus vectors extended to rays that are truncated when they intersect this plane.
Being a convex solid, the spectrum cone intersects the plane in a convex polygonal area that
is shaded grey. This area (and sometimes the plane as a whole) is called the chromaticity
diagram. Since the spectrum cone only depends on the response functions, and not on the
illuminant, the chromaticity diagram is also independent of illuminant, and applies solely to
the sensor.

Since a spectrum locus vector results from a monochromatic reflectance spectrum, the
points where locus rays intersect the chromaticity diagram will be called monochromatic
points, and each monochromatic point can be assigned the representative wavelength of the
locus vector that generates it. The vertices of the polygonal boundary are all monochro-
matic points, but monochromatic points can appear inside the area as well. For human
vision, the chromaticity diagram takes a familiar horseshoe shape, and the monochromatic
points all occur on the curved section of the boundary, where they are typically labeled with
representative wavelengths.

3.7 Optimal Colours

Colours on the boundary of the object-colour solid are called optimal colours. Given a
sufficiently fine discretization, every boundary point of the zonohedral object-colour solid is
as close as desired to a vertex, so any optimal colour is sufficiently well approximated by
a vertex. Every vertex of a zonohedron is a sum of some subset S of the generators; the
coefficient of each generator in S is set to 1, while the coefficients of all the other generators
are set to 0 (see Sect. 2.8.1 of Ref. 4). A subset S leads to a vertex if and only if S consists of
all the generators that are on one side of a plane H through the origin. Every plane through
the origin can be seen as the kernel of a linear functional F, defined up to a multiplicative
constant. F takes on positive values for all the vectors on one side of H, and negative
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Figure 2: A Spectrum Cone and Chromaticity Diagram

values on the other side. Furthermore, if F (v) is positive for some vector v, then F (αv) is
also positive, whenever the coefficient α is positive; an analogous statement holds if F (v)
is negative. Rather than requiring spectrum locus vectors to be on one side of H, then, we
could just as well require the corresponding rays to be on one side of H.

Figure 3 shows an example, using the spectrum cone and chromaticity diagram from
the previous figure. The grey triangle is the intersection of the planar kernel H of a func-
tional with the positive octant, bounded by the plane used for the chromaticity diagram.
The functional is positive on one side of its kernel, and negative on the other side. The
monochromatic points on the positive side have been indicated with grey dots, while those
on the negative side have been indicated with black dots. Each monochromatic point has
a corresponding locus vector, so there is such a vector for each grey dot. Summing up the
spectrum locus vectors corresponding to grey dots gives a vertex, which is also an optimal
colour, of the object-colour solid. Similarly, the sum of the locus vectors corresponding to
black dots gives another optimal colour, that is diametrically opposite, through the solid’s
center of symmetry, to the first optimal colour. Any optimal colour can be produced by a
planar kernel, and likewise all planar kernels produce optimal colours.

The chromaticity diagram allows this construction to be simplified from three dimensions
to two. Figure 4 shows the triangular intersection of the positive octant and the plane
X + Y + Z − 1, from Figure 3. This intersection in fact is the chromaticity diagram, and
the kernel of the functional reduces to a straight line. While the kernel must go through
the origin in three-dimensional space, any line in the chromaticity diagram can occur. The
requirement to be on one side of the planar kernel in R3 now reduces to being on one side
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Figure 3: Generating a Zonohedron Vertex from the Spectrum Locus
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of the line in the chromaticity diagram. The grey dots in the chromaticity diagram still
correspond to the grey spectrum locus vectors, which sum to a vertex, but it is easier to
work in a two-dimensional space than in R3.

3.8 Optimal Reflectance Spectra

Since an optimal colour belongs to an object colour solid, any optimal colour must result
from some reflectance spectrum, called an optimal spectrum. The previous constructions
indicate how to characterize optimal spectra. Suppose some straight line cuts a chromaticity
diagram, as in Figure 4. The line defines a unique planeH that contains both the line and the
origin. Then select all the monochromatic points on one side of the line, and construct the
reflectance spectrum in which all the corresponding wavebands reflect at 100%, and all other
wavebands reflect at 0%. In the zonohedron, the colour corresponding to that reflectance
spectrum is the sum of all the locus vectors on one side of H, and so is a vertex, and thus
an optimal colour.

The positions of monochromatic points in the chromaticity diagram determine the form of
optimal spectra, and that form varies with the sensor. For human vision, the monochromatic
points are all on the boundary of the horseshoe-shaped chromaticity diagram; furthermore,
the points are well-ordered by wavelength, falling in an ordered sequence from 400 to 700 nm.
This special form implies8 Schrödinger’s optimal colour theorem:1,9,4 An optical reflectance
spectrum for human vision takes on only the values 0 and 1, with at most two transitions
between those values. Conversely, every reflectance spectrum of this form produces an opti-
mal colour. For an artificial camera or sensor, however, whose response functions differ from
human vision, some monochromatic points might occur inside the convex hull of the other
points, and the points might not appear in order. Then the optimal spectra for that sensor
does not have to follow Schrödinger form, or any other convenient form for that matter. In
fact, the main result of this paper is that optimal spectra for a more general object called a
double object-colour solid do not have any nice form, and in fact show an indefinitely large
number of transitions between 0 and 1.

4 Double Object-Colour Solids

An object-colour solid for a sensor or the HVS consists of all the colour signals that result
from physical objects under a particular illuminant. An important practical case occurs
when a sensor makes an image under one illuminant I1, which produces an unwanted colour
cast. For instance, the image colours might tend to be unrealistically reddish, because I1
itself is reddish. To see how the image would have appeared under a more neutral illuminant
I2, some colour correction algorithm is needed. To develop such algorithms, Eugene Allen
suggested (p. 38 of Ref. 2) a six-dimensional hypervolume that concatenates the colour
signal maps for both illuminants into a single vector with six components. We shall call
such hypervolumes double object-colour solids. This section will define double object-colour
solids mathematically, and then prove the paper’s main result that an optimal reflectance
spectrum for a double object-colour solid can always be found, by choosing an appropriate
I1 and I2, that contains indefinitely many transitions between 0 and 1.
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4.1 Mathematical Definitions

Suppose that we have a sensing device with three response curves (r1, r2, and r3) and two
illuminants (I1 and I2). The two illuminants give two associated colour signal maps, Υ1 and
Υ2 :

Υ1(ρi) = (I1(λi)r1(λi), I1(λi)r2(λi), I1(λi)r3(λi)) = I1(λi)σ(λi), (23)

Υ2(ρi) = (I2(λi)r1(λi), I2(λi)r2(λi), I2(λi)r3(λi)) = I2(λi)σ(λi), (24)

where λi is a representative wavelength for the ith waveband in some discretization of the vis-
ible spectrum, and ρi is a monochromatic spectrum defined as in Equation (9). Concatenate
Υ1 and Υ2 into a joint colour signal map Υ : χ→ R6 :

Υ(ρi) = (Υ1(ρi); Υ2(ρi)) (25)

= (I1(λi)r1(λi), I1(λi)r2(λi), I1(λi)r3(λi); I2(λi)r1(λi), I2(λi)r2(λi), I2(λi)r3(λi)) (26)

= (I1(λi)σ(λi); I2(λi)σ(λi)). (27)

The semi-colon in Equations (26) and (27) could equally as well be replaced with a comma,
but a semi-colon will emphasize that the destination space R6 is divided naturally into two
three-dimensional subspaces: the first three coordinates refer to the first illuminant, and
the second three refer to the second illuminant. While Equations (23) through (27) apply to
monochromatic spectra, we can use linearity to find an expression for the arbitrary spectrum
ρ given by Equation (10):

Υ(ρ) =
∑

αiΥ(ρi). (28)

The range Z = Υ(χ) of Υ is the double object-colour solid for the sensor and the two
illuminants. Since all the coefficients αi are between 0 and 1, the set Z is in fact the zonotope
generated by the six-dimensional vectors in Expression (27). Under our assumption that all
sensor outputs are non-negative, Z must be a subset of the non-negative octant of R6, and
exhibit the previously discussed properties of convexity, central symmetry, a vertex at the
origin, and so on. Single and double object-colour solids share a common zonal structure,
but the former exist in three dimensions, while the latter require six dimensions. Optimal
colours for a single illuminant occur on the boundary of that illuminant’s three-dimensional
object-colour solid. Optimal colours for a pair of illuminants are similarly defined to be those
colours that occur on the boundary of the double object-colour solid for the two illuminants.
Analogously to the single case, optimal reflectance spectra for a pair of illuminants are
mapped by Υ to boundary points of the double object-colour solid.

A natural question is whether the optimal spectra of double object-colour solids exhibit a
simple, Schrödinger-like form. Apart from theoretical interest, this question arose in a recent
paper by Logvinenko et al.,3 where the boundary of a double object-colour solid needed to be
parametrized. Since a six-dimensional convex body has a five-dimensional boundary, the set
of reflectance spectra of interest were taken to be 0-1 functions with up to five transitions.
While this set worked well enough for their application, it was unclear whether five transitions
were always sufficient, or if more would sometimes be needed. The main result of this paper,
to be proven next, is negative: no number of transitions is sufficient for all situations. More
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precisely, for any given sensor and response curves, and any positive integer n, a pair of
illuminants can always be found such that at least one optimal reflectance spectrum exists
that requires more than n transitions between 0 and 1. (One assumes implicitly for this
result, of course, that a sufficiently fine discretization has been chosen.)

4.2 Proof of Main Result

Suppose that we are given a sensing device and its three response curves, along with a dis-
cretization of the visible spectrum. Then a sensor chromaticity diagram can be constructed,
on which the monochromatic points can be marked. The chromaticity diagram is inde-
pendent of the illuminant, so the monochromatic points will not move, no matter how the
illuminant changes.

Now suppose that there is a double object-colour solid for the sensor, with respect to
illuminants I1(λ) and I2(λ). Then the solid is a zonotope in R6, and each vertex is an optimal
“colour,” with a corresponding optimal reflectance spectrum. To a vertex v we can associate
a subset S of the set of six-dimensional spectrum locus vectors, such that v is exactly the
sum of all the vectors in S. Furthermore, to each vertex we can associate a (non-unique)
linear functional F, such that F is positive on every vector in S, and negative on every vector
not in S. The kernel of F is a five-dimensional hyperplane H that divides R6 into two halves;
all the vectors in S, and no vectors not in S, are in one half.

The fact that R6 is a concatenation of two copies of the three-dimensional colour output
spaces allows us to write

F = F1 + F2, (29)

where F1 is a linear functional that is 0 on the last three coordinates (those that correspond
to I2) of R6, and F2 is 0 on the first three coordinates (those that correspond to I1). F1 can
then be seen as a linear functional on the first copy of the three-dimensional colour output
space, where the corresponding two-dimensional hyperplane ker(F1) divides the space into
two halves. There is also an equivalent corresponding line L1 that divides the chromaticity
diagram into two halves. The monochromatic points on the “positive” half correspond to
the three-dimensional spectrum locus vectors on which F1 is positive. Similar constructions
exist for a line L2, derived from F2, but on the second copy of the sensor’s output space.

Rather than starting with a linear functional on R6, one could reverse the above con-
structions: choose lines L1 and L2, extend them to three-dimensional functionals F1 and F2,
and then add F1 and F2 to get a functional F on R6, which would lead to a vertex, and thus
an optimal colour, for the double object-colour solid. The reversibility of the constructions
shows that starting with two lines in the chromaticity diagram is equivalent to starting with
a functional.

Regardless of the illuminants (though they must satisfy the mild assumption of being
positive on the visible spectrum), the chromaticity diagrams for the two copies of colour
output space are identical, with the monochromatic points in exactly the same positions.
The lines L1 and L2, on the other hand, are likely different. Figure 5 shows an example. Each
line divides the diagram into a positive and a negative side, as indicated, and also divides
the monochromatic points into positive and negative sets. Each monochromatic point can
be classified into one of three categories:
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Figure 5: Chromaticity Diagram with Two Lines Arising from a Functional F on R6

1. Points that are on the positive side of both lines,

2. Points that are on the negative side of both lines, and

3. Points that are on the positive side of one line, and the negative side of the other line.

Figure 5 indicates the points in the first category with a + sign, the points in the second
category with a − sign, and the points in the third category with a question mark. If a
point is in the first category, then F1 and F2 are both positive on the spectrum locus vector
corresponding to that point, so F, which is the sum of F1 and F2, is also positive there.
Similarly, F is negative on the locus vectors corresponding to the second category. The sign
of F on a point in the third category is uncertain, however, because F1 and F2 have different
signs for such a point.

An optimal reflectance spectrum for the optimal colour produced by F is 1 on all the
wavebands where F is positive, and 0 elsewhere. Optimal reflectance spectra thus take on
only the values 0 and 1. Each monochromatic point corresponds to a waveband, so the
optimal reflectance spectrum must be 1 for wavebands whose monochromatic points are
labeled with a + sign, and 0 for wavebands whose points are labeled with a − sign. A
transition between 0 and 1 only occurs when adjacent wavebands in the spectrum lead to a
positive and a negative monochromatic point. In the most conservative case (the case with
the fewest transitions), the monochromatic points are well-ordered in wavelength, so that
the positive points form a block of adjacent wavebands with value 1, and the negative points
form a block of adjacent wavebands with value 0. A transition in Figure 5, then, would
occur at the far right, where the positive points meet the negative points.

For the points in the third category, however, those indicated with question marks, we
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will show how to create as many transitions as desired, simply by choosing appropriate values
for I1 and I2 on those wavebands. Let λ be a representative wavelength for a waveband with
a question mark. Then

F (λ) = F1(λ) + F2(λ) (30)

= F1(I1(λ)σ(λ)) + F2(I2(λ)σ(λ)) (31)

= I1(λ)F1(σ(λ)) + I2(λ)F2(σ(λ)) (by linearity). (32)

The sign of F (λ) can then be determined by asking when I1(λ)F1(σ(λ)) + I2(λ)F2(σ(λ))
is less than or greater than 0. Assume without loss of generality that F1(σ(λ)) > 0 and
F2(σ(λ)) < 0. Then simple algebraic manipulations give{

F (λ) > 0, when I1(λ)
I2(λ)

> −F2(σ(λ))
F1(σ(λ))

F (λ) < 0, when I1(λ)
I2(λ)

< −F2(σ(λ))
F1(σ(λ))

(33)

Since illuminants take on only positive values, it is easy to see that one could arrange to
have F (λ) greater or less than 0 as desired, simply by adjusting I1(λ) or I2(λ).

The figure shows three adjacent third-category wavebands. Even if they don’t appear by
happenstance, however, such a set can always be found by choosing appropriate lines L1 and
L2, from which a functional F on R6, and thus an optimal colour, can be identified. If one
also allows a sufficiently fine discretization, then the number of third-category wavebands
can be made as large as desired. Give the names λ1, λ2, λ3, etc to their representative
wavelengths. The previous paragraph shows how these wavebands can take on value 1 or
0 in the support of the optimal reflectance spectrum, simply by adjusting I1(λ1), I1(λ2),
I1(λ3), etc. ( or I2(λ1), I2(λ2), I2(λ3), etc.) so that F takes on positive or negative values
as desired, in accordance with Equation (33). If the monochromatic points are well-ordered,
then arranging for F (λ1) to be positive, F (λ2) to be negative, F (λ3) to be positive, and so
on, forces transitions between adjacent wavelengths. Even if the monochromatic points are
not well-ordered, however, one can always arrange for a third-category waveband to take on
a value opposite to an adjacent waveband, and thus cause a transition. In this way, then,
an optimal reflectance spectrum can be found with as many transitions as desired. Thus,
unlike the Schrödinger form for single object-colour solids for human vision, the optimal
spectra for double object-colour solids have no maximum number of transitions, as was to
be demonstrated.

4.3 Discussion

Since this paper’s main result is negative rather than positive, it is likely of more theoretical
interest than practical. Two issues mitigate the difficulties suggested by the result: first, most
applications involve “well-behaved” illuminants and sensors, so the worst cases envisioned
by the constructions might never occur, and second, a finite number of transitions likely
provides a good-enough approximation in many cases.

In contrast to the optimal colour theorem for human object-colour solids, which says that
an optimal spectrum never has more than two transitions, regardless of the illuminant, this
paper shows that no number of transitions for optimal spectra for double object-colour solids
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would be sufficient for an arbitrary pair of illuminants. In practice, however, the illuminants
are often already chosen; for instance, a photograph might be taken under Illuminant F1
and then converted to Illuminant D65. Other restrictions might also exist, e.g. that the
two illuminants are well-behaved enough to have a limited number of crossings, or that one
is a scalar multiple of the other. These special cases might rule out some of the construc-
tions in the proof. While no general rule could be found, because optimal spectra depend
on monochromatic points, whose positions vary unpredictably from device to device, it is
plausible that cases exist in which the number of transitions in fact is bounded. Each case
would have to be investigated individually, however, to find the maximum.

The second point involves approximating the set of all reflectance spectra rather than
considering every spectrum. With a typical discretization of about 30 wavebands, the set
of all spectra is 30-dimensional, too large to search exhaustively, and too large for many
optimization algorithms. Instead, a smaller-dimensional set with a simple form could be
chosen, even though it does not contain every spectrum—if it contains a metamer for every
reflectance spectrum, it might cover colour space well enough for many practical purposes.
Some special forms are Logvinenko’s object colour spectra10 and Centore’s four-transition
0-1 spectra.11 These more manageable forms require three and four dimensions, respectively.

The computational advantages and geometric rationale for 0-1 functions make them nat-
ural candidates for double object-colour solids. By our zonal constructions, in fact, the
reflectance spectra corresponding to the boundary of a double solid must be 0-1 functions.
In a recent paper on metamer mismatch bodies (MMBs), Logvinenko, Funt, and Godau3 used
0-1 functions for just this situation. Since the boundary of a double solid is five-dimensional,
the authors took the natural course of allowing up to five transitions. While the current
paper shows that no number of transitions is sufficient for all sensing devices and illumi-
nants, it is still likely that the choice of five transitions is adequate for practical cases, in
which some approximation is expected—indeed, the very act of discretization introduces an
approximation. A simple approach to insuring that enough transitions were used might be
to keep increasing the number of transitions until the differences were negligible for practical
considerations. For instance, calculate MMBs using four transitions, then five, then six, and
so on, until the variation in the results is too small to be of concern.

While providing some understanding, then, and of course potentially contributing to
further development, this paper’s negative result, that no number of transitions is sufficient
to produce all optimal reflectance spectra for double object-colour solids, probably makes
no difference for practical applications, where a small number of transitions would usually
provide a good enough approximation.

5 Summary

In the context of imaging or vision, a colour signal map for a given illuminant determines
which element of colour space an object’s reflectance spectrum is mapped to, when viewed
under that illuminant. For a single device or vision system, the range of a colour signal map is
a subset of three-dimensional colour space called an illuminant gamut, or, for human vision,
an object-colour solid. Each illuminant leads to a different solid. A double object-color solid
is defined for a three-dimensional imaging device (one case of which is the human vision
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system), and a pair of illuminants. The double object-colour solid is the six-dimensional
hypervolume obtained by concatenating, for each possible reflectance spectrum, the three-
dimensional single solids. In colour space, the colours on the boundary of an object-colour
solid are called optimal colours, and the reflectance spectra which produce optimal colours
are called optimal reflectance spectra. For a single solid for human vision, optimal spectra
possess Schrödinger form: they take on only the values 0 and 1, with at most two transitions
between those values.

This paper investigated optimal spectra for double object-colour solids, that is, those
spectra whose two colour signals (one for each illuminant), when concatenated, appear on
the boundary of the six-dimensional double solid. A series of geometric constructions showed
that, like Schrödinger form, optimal spectra for double solids take on only the values 0
and 1. The main question of interest was whether an optimal spectrum has a maximal
number of transitions between those two values, and if so, what that maximum is. Further
geometric constructions reduced the problem to two arbitrary lines in the two-dimensional
device chromaticity diagram. The number of transitions in a spectrum depends on how
those lines divide up the monochromatic points, and on the relative strength of the two
illuminants on some of those points. The existence (or not) of a transition was found to
depend on a simple algebraic relationship. By increasing the fineness of the discretization
as needed, and choosing illuminant values to satisfy the algebraic relationship for specially
chosen monochromatic points, two illuminants could be created for which some optimal
reflectance spectrum would have an arbitrarily large number of transitions. Thus Schrödinger
form does not generalize to double object-colour solids: there is no maximum number of
transitions on optimal spectra for double solids. While this result is of theoretical interest,
it likely has little practical import, because spectra with a moderate number of transitions,
such as five or six, should provide adequate approximation in most cases, and in any event,
the approximation can be refined steadily until the result varies as little as desired.
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