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Abstract

The Kubelka-Munk model relates the colours of mixtures to the absorption
and scattering coefficients (K and S) of the constituent colorants. A 1987
least squares algorithm by Walowit, McCarthy, and Berns estimates K and
S for a set of constituent colorants, from the reflectance spectra of mixtures
of those colorants. Their algorithm implicitly weights all the least squares
residuals equally. As a result of analyzing residuals and perceptual factors,
the current paper recommends a new weighting, called perceptual reflectance
weighting. The residuals are shown to follow a probability distribution that
depends on S, reflectance level, and reflectance measurement errors. These
errors are modeled as an unbiased normal distribution, with the same variance
at all reflectance levels. In addition, CIE L* describes how perceptual response
depends on reflectance level. Perceptual reflectance weighting combines both
these dependencies into one weight. The 1987 algorithm is easily modified, by
multiplying each row (except the last) of its coefficients matrix by the appropri-
ate weight, and by using the original estimates of S. An example, taken from
practice, illustrates that the new weights can significantly change and improve
the 1987 algorithm.

1 Introduction

The Kubelka-Munk model1 predicts the colour of a mixture of paints, provided one
knows the absorption coefficient, K, and scattering coefficient, S, for each constituent
paint, at each wavelength. An important practical problem is to determine K and
S for the constituent colorants, by measuring the reflectance spectra of mixtures of
the constituents at known concentrations. In 1987, Walowit, McCarthy, and Berns
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Figure 1: Reflectance Spectra Predicted by 1987 WMB Algorithm

published a least-squares algorithm2 (referred to here as the WMB algorithm) for
this problem. The current paper proposes modifying this algorithm with a weighting
function. In this weighted WMB algorithm, each row (except the last) of the matrix
KSCOEFS in the WMB algorithm is multiplied by a factor which depends on the
reflectance level of the measurement that generated that row. In addition, the un-
modified WMB algorithm is run once to produce estimates of S, which are needed
to calculate the weighting factors.

The new weighting was motivated by the performance of the original WMB al-
gorithm, when analyzing some artist’s acrylic paint samples. Figure 1 shows the
reflectance spectra for a tint ladder of Phthalo Blue (Red Shade), manufactured
by Golden Artist Colors. The tint ladder was produced by mixing the blue with
Golden’s Titanium White, in various proportions. A table gives the concentration
by volume of white, Cw, and blue, Cb, in each mixture. The thick grey lines in the
plot are the measured reflectance spectra of the mixed samples.

The WMB algorithm was used to estimate Kw, Sw, Kb, and Sb (the coefficients
for the white and the blue), at each multiple of 10 nm in the visible spectrum. Using
the estimated coefficients, the Kubelka-Munk model could predict the reflectance
spectrum for each concentration; the thin black lines on the plot show these pre-
dictions. A prediction is considered accurate if the colour difference between the
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measured and predicted spectra is small. Colour difference was evaluated with the
CIE ∆E00 formula,3 as modified by Sharma,4 calculated with respect to Illuminant
C.

The table beside the plot lists the ∆E00 values for the different mixtures. While
most are not much more than 2 (a common threshold for acceptable matches), the
prediction for white is very bad, at 27. The plot shows that the white prediction
varies wildly around the white measurements. This large deviation drives the average
∆E00 to a high value of 4.4.

Additionally, the predicted reflectance spectra seem to become progressively less
accurate as reflectance level increases. The current paper finds that sensitivity in
Kubelka-Munk relationships explains the less accurate matches for lighter colours.
A weighting function is derived to compensate for this sensitivity. (The possibility
of a weighting function had been mentioned in a follow-up paper5 by the algorithm’s
authors.)

The recommended weighting function is based on two relationships. First, as
Nobbs6 and Okumura7 have already pointed out, the ratio K/S is sensitive to small
changes in measured reflectances, at low reflectance levels. K/S is insensitive to
changes at high reflectance levels. As a result, the large reflectance errors in Fig-
ure 1 are tolerated for light colours, but not for dark colours. The current paper
shows how sensitivity gives undue importance to some least-squares residuals, thus
degrading the algorithm’s result. A central result is Equation (29), which expresses
a residual as a probability distribution that depends on both S and the reflectance
measurement error. A reflectance measurement error is modeled as an unbiased nor-
mal distribution, whose variance does not depend on reflectance level. Equation (29)
allows the calculation of each residual’s variance, from which an appropriate weight
can be derived.

The second relationship, described by Munsell value or CIE lightness (L∗), is
that humans respond more to reflectance changes at low reflectances than at high
reflectances. The weighted WMB algorithm aims to predict reflectance spectra that
are perceptually close to the mixtures’ actual reflectance spectra. Thus a change in
reflectance level is only as important as the corresponding change in L∗. Therefore
the weight from Equation (29) has been multiplied by an additional, perceptual,
factor, that depends on reflectance level. Viggiano8 has already calculated this new
factor, in the context of a metamerism index.

The weighted WMB algorithm uses perceptual reflectance weighting, which simul-
taneously encompasses reflectance weighting (from the first relationship) and percep-
tual weighting (from the second relationship).

Figure 2 shows the results of the weighted WMB algorithm, given the same
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Figure 2: Reflectance Spectra Predicted by Weighted WMB Algorithm

mixtures that appeared in Figure 1. The measured reflectance spectra are identical
in both figures, but the predicted spectra are more accurate in the second figure. The
average ∆E00 has decreased from 4.4 to 1.9. The improvement is particularly obvious
in the match for white. In the second figure, this match is practically identical in
terms of reflectance, and its ∆E00 is only 1.1. The matches for the darker colours in
the second figure, though not quite as good as in the first figure, are still well within
acceptability. Overall, perceptual reflectance weighting does not favor either light or
dark colours.

This paper is organized as follows. First, the least squares context, including
weights and residuals, is discussed. Then, Kubelka-Munk relationships are used
to relate residuals to reflectance measurement variability, yielding expressions for
reflectance weighting. Third, perceptual relationships are analyzed, yielding expres-
sions for perceptual weighting. The two are combined into perceptual reflectance
weighting, and an algorithm is presented that is a simple modification of the 1987
WMB algorithm. A sensitivity analysis gives order-of-magnitude estimates of the
relative sizes of the weights. Finally, the algorithm is applied to an example.

c© 2013 Paul Centore 4



PERCEPTUAL REFLECTANCE WEIGHTING FOR KUBELKA-MUNK

2 Weights for Kubelka-Munk Estimation

2.1 Least Squares, Residuals, and Weights

The linear least squares algorithm estimates the parameters of a linear model, from a
set of measured data points.9 A model is a function that uses varying inputs and fixed
parameters, to calculate outputs. Some of the parameters are known, and others are
unknown; the goal is to estimate the unknown parameters. Each data point consists
of a set of model inputs, and measurements of the corresponding outputs. The inputs
are assumed to contain no errors, but the output contains measurement errors, which
are unbiased and normally distributed. The variances of the errors might be identical,
in which case they will not affect the estimates of the parameters. If they are not
identical, they will affect the estimates.

If one hypothesizes a set of values for the unknown parameters, then the model
becomes a function that can be evaluated. The quality of a hypothesized function’s
fit is indicated by its residuals. A residual is the difference between a measured
output, for a known input, and the output that the function predicts for that input.
There is a residual for each data point, so there can be a large set of residuals.
Rather than comparing residuals directly, one should compare residuals that have
been weighted by the standard deviations (the square roots of the variances) of the
outputs’ measurement errors. If the variance of the ith output is σ2

i , and the value
of the ith residual is ri, then the weighted residual rwi is given by

rwi =
ri

σi

. (1)

The least squares algorithm finds the set of parameters which minimizes W, the
weighted sum of squared residuals:

W =
N∑

i=1

(
ri

σi

)2

. (2)

Weighting accounts for the fact that a large residual difference might be caused
by a large measurement error, rather than by poorly chosen parameters. It is more
important for a fit to agree closely with a very accurate measurement, than to agree
with a less accurate measurement. If each data point has the same variance σ2 (even
if that variance is unknown), then σi factors out of Equation (2), and is not needed
for the least squares algorithm.. If σi does vary significantly from residual to residual,
then it can greatly affect the outcome of the algorithm, even if the data itself remains
unchanged.
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A least squares implementation cannot avoid using weights, even if only implicitly.
The 1987 algorithm tacitly assumes that the weights in a set of linear Kubelka-
Munk relationships are identical. The current paper recommends a different set of
weights, based on reflectance measurement errors and perceptual relationships. The
recommended σi’s can differ by several orders of magnitude, and thus significantly
affect the algorithm’s outcome.

2.2 The Least Squares Formulation for Kubelka-Munk

The WMB algorithm assembles a system of linear relationships, based on the Kubelka-
Munk model. If there were no measurement or model error, the system could be
solved exactly. Because of error, however, a least squares approach is used to find
the best (though still not exact) set of Kubelka-Munk coefficients. The algorithm’s
original presentation2 does not explicitly specify how weights are assigned.

A geometric least squares example will explain how the weights are introduced.
Consider the problem of identifying the point (x, y) in the Cartesian plane, which
satisfies a set of linear relations, which are only known to within some error. For ex-
ample, suppose measurements indicate that (x, y) should lie on each of the following
lines (shown in Figure 3):

−0.40x− 0.27y + 0.80 = 0, (3)

−0.60x+ 0.40y + 0.60 = 0, (4)

0.20x− 0.67y + 1.00 = 0. (5)

Without measurement error, the three lines would intersect perfectly at (x, y), and
satisfy the linear system −0.40 −0.27

−0.60 0.40
0.20 −0.67

[ x
y

]
=

 −0.80
−0.60
−1.00

 . (6)

Because of measurement error, the lines actually form a small triangle. It would be
thus expected that (x, y) is near each line rather than exactly on it.

To be consistent with the WMB algorithm’s original presentation,2 the following
notation will be used for the matrices and vectors in Equation (6):

KSCOEFS×KANDS = OBS. (7)

According to the least squares algorithm, the parameters KANDS that come closest
to satisfying Equation (7) are given by

KANDS = (KSCOEFSᵀKSCOEFS)−1 KSCOEFSᵀOBS, (8)

c© 2013 Paul Centore 6
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Figure 3: Example of Least Squares Formulation

where ᵀ denotes matrix transposition. Applying Equation (8) to Equation (6) gives[
x
y

]
=

[
1.61
1.58

]
. (9)

This point is also shown on the figure. It is approximately at the center of the
triangle, and about equally near to each of the three lines.

This simple example contains an easily overlooked subtlety: the very form of the
matrices and vectors introduces some implicit assumptions about weights. Appar-
ently irrelevant changes can alter the least squares solution. For example, multiple
Equation (3) by 2, getting

−0.80x− 0.53y + 1.60 = 0, (10)

and adjust Equation (6) accordingly to get −0.80 −0.53
−0.60 0.40

0.20 −0.67

[ x
y

]
=

 −1.60
−0.60
−1.00

 . (11)

Applying Equation (8) to Equation (11) gives[
x
y

]
=

[
1.31
1.36

]
. (12)
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This point also appears in the figure. It is definitely different from the first point.
Rather than being near the center of the triangle like the first point, it is closer to
the first line than to the other two lines.

This result is surprising, because Equations (3) and (10) are identical. In fact, the
points that satisfy the equations exactly do not change. The interpretation of points
that satisfy the equations approximately, however, do change. The left hand side of
Equation (11) can be thought of as a linear model with unknown parameters x and
y. The value -1.60 in Equation (11) is analogous to a measured output. Equation
(10) is the difference, i.e the residual, between the model output, assuming a given x
and y, and the measured output, -1.60. Those x-y-pairs which are on the line have
residual 0, whether the line is given by Equation (3), Equation (10), or any other
constant multiple of Equation (3). The residuals of all other x-y-pairs, however,
change when Equation (3) is multiplied by a constant factor. Using Equation (3),
the residual for the first point is 0.33, while using Equation (10), the residual for the
first point is 0.66, twice the value.

To minimize W, the least squares algorithm moves the original solution closer to
the first line when the residual from the first line is increased. Similar adjustments
would occur if the other linear relationships were multiplied by constant factors.
Multiplying the ith linear relationship by a constant has the same effect as Equation
(2), which multiplies the ith residual by 1/σi. In both cases, some residuals are
weighted more or less, relative to other residuals. The weight itself can be seen
as 1/σi, the inverse of the standard deviation for the ith residual. If the standard
deviations of the residuals are known, then they should be used to find a more
accurate least squares solution.

Step 3 of the WMB algorithm calculates a series of linear relationships involving
reflectance measurements and Kubelka-Munk coefficients. Each linear relationship
has a left side (given by a row of KSCOEFS × KANDS) and a right side (given by
an entry in OBS). The residuals are the differences between the left and right sides.
Because no multiplicative factors are used, the residuals are, in effect, all weighted
equally. Since the right side of all the linear relationships is an entry of 0 in OBS,
a weight for the ith residual would be implemented simply by multiplying the ith

row of KSCOEFS by the desired weight. Ideally, that weight would be 1/σi. The
next section of the current paper calculates the σi’s. The weighted WMB algorithm
incorporates these σi’s into KSCOEFS, and then evaluates Equation (8).

c© 2013 Paul Centore 8
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3 The Weighted WMB Algorithm

3.1 Linear Kubelka-Munk Relationships

The Kubelka-Munk model1 characterizes a paint by using an absorption coefficient,
K, and a scattering coefficient, S. Both coefficients are functions of wavelength, and
both vary between 0 and 1. If the paint is applied as a masstone, the bulk reflectance
R (often denoted R∞ for a masstone) can be related to the ratio of K and S:

K

S
=

(1−R)2

2R
. (13)

For convenience, the right-hand side will be denoted as a function, f(R). A set of
n paints can be mixed together, in concentrations C1, C2, ...Cn, to produce a new
paint, of a different colour. If the ith paint has Kubelka-Munk coefficients Ki and Si,
then the Kubelka-Munk coefficients for the mixture are given by

Kmix = C1K1 + C2K2 + ...+ CnKn, (14)

Smix = C1S1 + C2S2 + ...+ CnSn. (15)

Equations (14) and (15) can be substituted into Equation (13) to give relationships
for the paint mixture as a whole:(

K

S

)
mix

=
C1K1 + C2K2 + ...+ CnKn

C1S1 + C2S2 + ...+ CnSn

=
(1−Rmix)2

2Rmix
. (16)

For brevity, the last four equations omit any dependence on wavelength.
In practice, the reflectance spectra R for paints and their mixtures can be mea-

sured directly (leaving aside the Saunderson correction1). Likewise, the concentra-
tions Ci are known. It is desired to determine K and S, at a given wavelength, for
each of the n constituent paints, given reflectance data for a set of m mixtures of
those paints, in known concentrations.

The WMB algorithm uses a least squares approach to determine K and S. For
each mixture, Equation (16) is rearranged to give a linear relationship:

−C1K1 − C2K2 − ...− CnKn +

(
K

S

)
mix

(C1S1 + C2S2 + ...+ CnSn) = 0, (17)

where each Ci is understood to depend on the mixture. In vector form, Equation

9 c© 2013 Paul Centore
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(17) becomes:

[
−C1,−C2, ...,−Cn,

(
K

S

)
mix

C1,

(
K

S

)
mix

C2, ...,

(
K

S

)
mix

Cn

]


K1

K2

...
Kn

S1

S2

...
Sn


= 0. (18)

The vertical vector does not depend on the mixture, but the horizontal vector
does. All the horizontal vectors, one for each mixture, can be stacked to form anm×n
matrix, and the 0 on the right-hand side can be repeated vertically m times to give
a vertical 0-vector. Thus, Equation (18) can generate a single matrix equation that
contains information for all the mixtures. In order to avoid a physically unrealistic
solution, in which every K and S is identically 0, a constraint row is added, consisting
of all 1’s, at the bottom of the m × n matrix; the augmented matrix is denoted
KSCOEFS. Similarly, a single 1 is added to the bottom of the vertical 0-vector,
producing a vector called OBS. When the vertical vector of K’s and S’s is denoted
KANDS, Equation (18) becomes a matrix equation identical to Equation (7), which
was presented in the original 1987 algorithm.

Apart from the constraint, this least squares formulation is similar to the example
in Figure 3. Each row of the matrix KSCOEFS gives a linear relationship, which is
analogous to a line in the plane. The vector KANDS corresponds to the x-y-pair,
though of course it has a higher dimension. In the following subsections, a closer
examination of f(R) and human perceptual response will determine the probabilistic
form of the residuals for these relationships, from which weights can be calculated
for the rows of KSCOEFS.

3.2 Reflectance Weighting

Least squares algorithms use the inverse standard deviation of a residual as a weight.
This section calculates how a standard deviation, σi, depends on reflectance, R. The
dependence relationship will help motivate the weighted WMB algorithm. Typically,
σi is the standard deviation of the measurement error. In the WMB algorithm, how-
ever, residuals are obtained by evaluating Equation (17), while the measurements are
spectrophotometric reflectance measurements of paint mixtures. We will manipulate
Equation (17) to express a residual as a function of spectrophotometer error. Both

c© 2013 Paul Centore 10
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the residual and the spectrophotometer error are probability distributions, rather
than single values. σi is the standard deviation of the residual’s distribution.

We will model a spectrophotometric measurement, Rm, of a true reflectance level,
Rt, as unbiased and normally distributed:

Rm −Rt ∼ N
(
0, σ2

m

)
. (19)

A measurement is said to be unbiased if its expected value is the true value, so the
mean error is 0. A measurement with normal error will be within 2σm of the true
value 95% of the time, and within 3σm 99% of the time. We will posit, furthermore,
that σ2

m is independent of reflectance level. As remarked earlier, it is not necessary
to know the value of σ2

m, provided that it is identical for all measurements.
Begin with Equation (17) for a particular mixture. Suppose that K and S are

the true Kubelka-Munk coefficients for that mixture. We wish to find the probability
distribution of the residual r for that mixture. Combine Equations (13) through (17)
to get

r = Kmix − f(Rm,mix)Smix (20)

= S ·
(
K

S
− f(Rm)

)
, (21)

where some subscripts have been dropped for conciseness. The function f inverts to
Rt, the true reflectance:

f(Rt) =

(
K

S

)
. (22)

Substitute Equation (22) into Equation (21) to get

r = S · (f(Rt)− f(Rm)) . (23)

Now use a Taylor expansion to approximate f(R) as a linear function around
Rm. This linear approximation is valid when R is not too far from Rm.

f(R)
.
= f(Rm) + f ′(Rm)(R−Rm). (24)

As long as the spectrophotometer is reasonably accurate, Rt should not be too far
from Rm, so let R be Rt in Equation (24), and substitute into Equation (23):

r = S · (f(Rm) + f ′(Rm)(Rt −Rm)− f(Rm)) (25)

= Sf ′(Rm)(Rt −Rm) (26)

∼ Sf ′(Rm)N(0, σ2
m). (27)

11 c© 2013 Paul Centore
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Differentiate the right-hand side of Equation (13) to get

f ′(R) =
R2 − 1

2R2
. (28)

Evaluate Equation (28) at Rm, and substitute into Equation (27) to get

r ∼ S
(R2

m − 1)

2R2
m

N(0, σ2
m). (29)

Equation (29) is a central result of this paper. It gives the statistical distribution
from which the residuals are drawn. The inverse weight, 1/σi, of the ith residual, ri,
is the standard deviation of ri. From Equation (29), it follows that

σi = Si
1−R2

i

2R2
i

σm, (30)

where Ri is the measured reflectance of the ith mixture. The term σm might be
unknown, but it is a common factor in all the weights, and so can be discarded. The
reflectance term Ri is measured directly. The scattering coefficient Si is not known
exactly, but it can be estimated by running the original 1987 algorithm, without
adding any weights, and using Equation (15). Later analysis, of the factors’ orders
of magnitude, will show that this approximation is adequate.

3.3 Perceptual Weighting

Reflectance weighting shifts the weight criterion from residuals to reflectance dif-
ferences. Perceptually, however, value or lightness compression can make this new
criterion misleading, because humans judge the same reflectance percentage differ-
ence to be more substantial at lower reflectance levels than at higher reflectance
levels. The residuals of the least squares problem, then, should be adjusted to in-
corporate perceptual terms, and not just reflectance terms. CIELAB coordinates10

relate the perceived lightness, L*, to the photopic luminance, Y :

L* = 116 (Y/Yn)1/3 − 16, (31)

where Yn is the tristimulus value of the reference white. While Y/Yn is not identical
with reflectance, the two are roughly equivalent. Therefore

L*(R)
.
= 116R1/3 − 16. (32)

c© 2013 Paul Centore 12
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Using a linear approximation to Equation (32), and evaluating at R = Rt, we get

L*(Rt)
.
= L*(Rm) +

116

3
R−2/3

m (Rt −Rm) (33)

L*(Rt)− L*(Rm) ∼ 116

3
R−2/3

m N(0, σ2
m) (34)

Apart from the normal distribution, Equation (34) has already been derived and
used by Viggiano,8 for a perceptual metric involving metamerism.

Equation (34) suggests that residuals should be weighted more heavily when
reflectance levels are low, to account for lightness compression. When Rm is near 1,
the right-hand side of Equation (34) is smaller than when Rm is near 0; the term

R
−2/3
m is always at least 1. An increased weight corresponds to a decreased σi, so we

should divide the σi in Equation (30) by the coefficient in Equation (34) to get a
new standard deviation:

σLi =
3

232
SiR

−4/3
i

(
1−R2

i

)
σm. (35)

Since the least squares solution will not be affected if we multiply every standard
deviation by the same constant, we can obtain a simpler expression:

σLi = SiR
−4/3
i

(
1−R2

i

)
. (36)

When the σ’s in Equation (36) are used in the WMB algorithm, the resulting
weights account for both reflectance measurement errors and human lightness com-
pression. This perceptual reflectance weighting is the basis for the weighted WMB
algorithm.

3.4 The Weighted WMB Algorithm

The following algorithm is recommended as a refinement to the 1987 algorithm of
Walowit, McCarthy, and Berns:

1. Run the 1987 algorithm, for the sole purpose of estimating the Kubelka-Munk
scattering coefficients S1, S2, . . . , Sn, for each of the constituent colorants.

2. The ith colorant mixture has known concentration coefficients, Ci,1, Ci,2, . . . , Ci,n,
which have been chosen to sum to 1. Estimate Si by

Si = Ci,1S1 + Ci,2S2 + . . .+ Ci,nSn. (37)

13 c© 2013 Paul Centore
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3. Calculate the standard deviation, σi, of the residual for the ith colorant mixture
by

σi = SiR
−4/3
i

(
1−R2

i

)
. (38)

4. Construct the ith row of the matrix KSCOEFS as in the 1987 algorithm. Divide
this row by σi.

5. Assemble all the modified rows into a weighted KSCOEFS matrix, and add a row
of 1’s at the bottom.

6. Calculate OBS and KANDS in accordance with the 1987 algorithm, using the
weighted KSCOEFS matrix from our Step 5. KANDS gives the desired Kubelka-
Munk coefficients.

Nobbs6 had previously suggested some sets of weights for Kubelka-Munk estima-
tion, that differ from those in the weighted WMB algorithm. His Equations (6.82),
(6.84), and (6.86), like our Equation (30), account for the sensitivity of K/S as a
function of R. Rather than estimate S for each mixture as we have done, however,
Nobbs suggests some simplifying assumptions, for example that K or S is constant,
or that the expression K(K+2S) is constant. Our Step 1 obviates these assumptions.
Furthermore, Nobbs does not account for lightness compression, as we do. Neverthe-
less, Nobbs’s weights should be a significant improvement over equal weights. The
further refinements in the weighted WMB algorithm should similarly improve on
Nobbs’s weights.

3.5 Sensitivity Analysis

Sensitivity in the relationship between Kubelka-Munk coefficients and reflectance
measurements is the reason that weights must be chosen carefully. Figure 4, a plot
of the function f(R) defined by Equation (13), illustrates this sensitivity. The two
indicated points show that a difference of 1% in R, when going from R = 0.02 to
R = 0.03, causes a difference of 7 in K/S. The same 1% difference in R, however,
when going from R = 0.85 to R = 0.86, only causes a minuscule difference of 0.002
in K/S. At higher reflectance levels, then, a very small change in K/S can lead
to a large change in R, orders of magnitude larger than the same small change in
K/S at a lower reflectance level. By weighting all residuals equally, the weighted
WMB algorithm is in effect looking at the differences in Kubelka-Munk terms (such
as K/S), rather than reflectance terms. Thus the large reflectance changes in the
upper curve of Figure 1 are discounted, because they do not affect K and S very
much. To account for reflectance correctly, perceptual reflectance weighting assigns

c© 2013 Paul Centore 14
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Figure 4: Sensitivity due to f(R)

unequal weights. This section will show that the nw weights can vary by several
orders of magnitude.

The new weights are derived from Equation (36), which can be decomposed into
three factors:

σLi = S · (R2 − 1)

2R2
·R2/3. (39)

The first term is the scattering coefficient, the second term (by Equation (28)) is the
derivative of the relationship between K/S and R, and the third term involves the
derivative of lightness compression. This section investigates the weight disparity for
the various residuals when perceptual reflectance weighting is used. Disparity in this
context refers to the differences, or ratios, between the weights associated with a set
of paint mixtures, at a particular wavelength. A convenient measure of disparity is
the condition number, which is the ratio of the maximum weight to the minimum
weight. Since weight is the inverse of σ, the condition number for weights and σ’s
is the same. Also, the condition number does not change when all the weights are
multiplied by the same constant.

It will be seen that the largest weights can exceed the smallest weights by a few
orders of magnitude. This disparity contrasts with the 1987 algorithm, where all the
weights are equal. Most of the disparity results from the second term, f ′(R), which

15 c© 2013 Paul Centore



PAUL CENTORE

can introduce differences of several orders of magnitude. The third term would cause
at most just over one order of magnitude. The first term, the scattering coefficient,
might cause at most two orders of magnitude.

These estimates were made for artist’s paints, though they would apply in many
other situations, too. It is rare for even the darkest artist’s paints to attain a Munsell
value much less than 1. A Munsell value of 1 corresponds to a reflectance (for an ideal
grey) of 1.2%. For artist’s paints, then, we can safely assume that R has a lower limit
of about 1%. All three terms, even the scattering coefficient, are related to R. In
addition, unless they are deliberately thinned with a glazing medium, artist’s paints,
even “transparent” paints, have some coverage capability, so will tend to transmit
less light rather than more. These properties will help find bounds for the three
terms.

First, the scattering coefficient, S. All the light that impinges on a thin internal
layer of paint (in accordance with the Kubelka-Munk model) is either absorbed,
scattered, or transmitted, so we can write

K + S + T = 1, (40)

where T is the proportion of light that is transmitted. Rearrange Equation (40) to
read K = 1− S − T, substitute the new expression into K/S = f(R), and rearrange
further to get

S =
1− T

f(R) + 1
. (41)

The upper bound on S is, of course, 1. When R reaches its lower limit of 1%, then
f(R) is about 49, so the denominator is about 50. Even if the transmission coefficient
T were as high as 50%, the value of S would still be no lower than 0.01. The largest
condition number of S is therefore not much more than 100, and would often be less.

The second term is the derivative of f(R), shown in Figure 5. The logarithmic
plot shows that weights can differ by several orders of magnitude. At 3% reflectance,
for example, the slope is -555, while at 75% reflectance, it is -0.389, a difference of
more than three orders of magnitude.

The third term is R2/3. This function is 1 when R is 100%, and decreases mono-
tonically as R decreases. When R reaches its lower bound of 1%, the function attains
its minimum value, which is only about 0.046, differing by a factor of about 22 from
the maximum. The greatest condition number between two weights is therefore not
much more than one order of magnitude.

The third term works in the opposite direction to the second term. At low
reflectance levels, the eye responds more to small reflection differences. Thus more
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Figure 5: Derivative of f(R)

care is taken over dark colours than light colours. The second term, f ′(R), however,
emphasizes matches for lighter colours, to avoid errors like the poor match for white
in Figure 1. Since the condition number of f ′(R) can be multiple orders of magnitude,
while the third term causes a condition number of at most 22, it is clear that f ′(R)
dominates.

Similarly, f ′(R) dominates the scattering coefficient, whose condition number is
at most two orders of magnitude. This dominance is also why the 1987 algorithm
provides acceptable estimates for the scattering coefficients. Even if its estimates of
S are in error by a large factor, such as 3, that error will be dwarfed by f ′(R), which
likely exceeds S by some orders of magnitude.

4 Examples

An example, based on the tint ladder in Figure 1, will illustrate the weighted WMB
algorithm. The thin black lines in Figure 1 are predicted reflectance spectra, that
the Kubelka-Munk model generated from a set of estimated K and S values. Our
example will posit that

1. There exist two paints with those exact K and S values,

2. The colours produced by mixing those two paints are in accordance with the
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Kubelka-Munk model, and

3. Our starting data is reflectance measurements of those paints at the concentra-
tions shown in Figure 1. The measurements are subject to a random error, which
follows a normal distribution with mean 0 and standard deviation 0.5 percentage
points. Figure 6 shows the data as asterisks that are near, but usually not on,
the thin black lines. (In practice, of course, only the asterisks would be available,
and not the lines.)

Our goal is to reconstruct the thin black lines seen in Figure 1, using the reflectance
data provided by the asterisks. The WMB algorithm will be compared with the
weighted WMB algorithm.

This example is different from actual problems, in that it assumes that the
Kubelka-Munk model is a complete and perfect description of paint mixing. Any
needed adjustments, such as the Saunderson correction,1 are assumed to have been
implemented. These assumptions eliminate model error, and isolate measurement
error, so that the algorithms are tested, rather than the Kubelka-Munk model itself.

Figure 7 shows the results of both the WMB and weighted WMB algorithms,
when applied to the asterisk data. The WMB predictions are erratic, especially for
lighter colours. The weighted WMB predictions, on the other hand, are smoother and
more accurate, for both lighter and darker colours. This disparity is obvious in the
right half, where the reflectance spectra are not evenly spaced. The 1987 algorithm,

c© 2013 Paul Centore 18



PERCEPTUAL REFLECTANCE WEIGHTING FOR KUBELKA-MUNK

Wavelength (nm)

R
ef

le
ct

a
n

ce
 R

a
ti

o

WMB Predictions
Weighted WMB Predictions

Reflectances from Kubelka-Munk Model

0.0

0.2

0.4

0.6

0.8

1.0

400 450 500 550 600 650 700

Figure 7: Comparison of WMB and Weighted WMB Algorithms

which weights all the mixtures equally, finds the large reflectance differences in the
upper curve acceptable, because they only cause slight changes in the residuals from
Equation (17). The weighted WMB algorithm, on the other hand, correctly weights
the lighter colours more. Even small residuals for the lighter colours are assigned
a heavy penalty, because they cause disproportionately large reflectance differences.
Overall, the weighted WMB algorithm is more stable and accurate than the original
1987 algorithm.

As mentioned earlier, the data in this example were generated from the Kubelka-
Munk model. In the real world, of course, that model might only be approximate.
In Figures 1 and 2, the two algorithms were applied to such real-world data. Despite
the fact that no Saunderson correction was used, the weighted WMB algorithm did
a creditable job of prediction, and avoided some of the erratic outcomes of the 1987
algorithm.

Figure 8 shows the condition numbers for the weights used by the weighted WMB
algorithm in Figure 2, and for the three contributing terms from Equation (39). As
expected, the second term, (R2−1)/2R2, dominates: in the right half of the spectrum,
the heaviest residual carries 25,000 times as much weight as the lightest residual. The
first term, S, reaches a maximum ratio of just over 100, while the third term, R2/3,
reaches a maximum ratio of just over 10, in line with expectations. The individual
terms combine to give an overall maximum ratio of about 250, in the right half of
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the spectrum. Even in the left half of the spectrum, the weighted algorithm gives
some residuals five to ten times more importance than other residuals. The weights
evenly cover a wide gamut, as seen by considering the weights for the nine curves at
620 nm. If the residual for the darkest curve is scaled to have a value of 1, then the
other eight curves, from darkest to lightest, have respective weights of 16, 39, 57, 78,
130, 121, 211, and 263. These weights are a significant departure from the original
1987 algorithm which treats all residuals equally.

While the predicted reflectances vary dramatically, the Kubelka-Munk coefficients
seem hardly to vary at all. Figure 9 shows the K and S coefficients, for the lightest
and darkest colours in Figure 2, calculated by the unweighted and weighted WMB
algorithms. Usually less than 1%, the differences in the figure appear inconsequential.
For lighter colours, however, sensitivity magnifies such small differences in K and S
into the large reflectance differences seen in Figure 2. The weighted WMB algorithm
compensates for this sensitivity by weighting the residuals for lighter colours very
heavily, in terms of their reflectance and perceptual consequences. The original WMB
algorithm makes no such provision, and can thus produce large reflectance errors.
The small percentage difference between the WMB and weighted WMB estimates of
S is another justification for using the WMB estimate of S in the weighted WMB
algorithm: a slight percentage error in S does not greatly affect the weights given by
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Equation (38).

5 Summary

A practical and a theoretical example, along with a mathematical derivation, have
shown that perceptual reflectance weighting of residuals can significantly improve the
1987 Kubelka-Munk estimation algorithm of Walowit, McCarthy, and Berns. The
1987 algorithm is easily modified, by multiplying each row of its coefficient matrix
KSCOEFS by an appropriate weight factor. The multiplicative factors were derived
analytically from two sources: the relationship between K/S and reflectance level,
and the relationship between perceived lightness and reflectance level. It is hoped
that real-world application will lead to further refinement and understanding of least
squares Kubelka-Munk estimation algorithms.
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