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Abstract

Using an inversion of the Munsell renotation, this paper calculates that
a colour’s shadow series is approximately a straight line in the Munsell sys-
tem. The line starts at the colour’s Munsell specification and ends about one
value step below N0, on the neutral axis. The colour’s hue in shadow shifts
slightly towards the yellow part of the spectrum. The calculations suggest that
ideal black belongs at about N(-1) in the Munsell system, rather than at N0, if
equality of perceptual steps is to be maintained. Similarly, ideal white should
be slightly lighter than N10.
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1 Introduction

Shadows are ubiquitous when viewing physical objects. In any realistic setting, some
parts of an object receive more light than other, more shaded parts. In a black and
white painting or photograph, the shadowed parts of an object, whose local colour
is assumed not to vary, are a darker grey than the more strongly lit parts. In a
representation in colour, there must also be a relationship, which this article derives,
between the shadowed and lit parts.

Suppose that the colour when lit has Munsell coordinates HV/C. For example,
HV/C could be 6GY8/14. Locate the lit colour in the Munsell section of constant
hue H, as shown in Figure 1. The left axis is a vertical line of neutral greys, numbered
from N1 through N9. Continue the neutral axis downward, to where the value would
be negative. Draw a line from the value -1.6 on the neutral axis, to the center of the
square containing 6GY8/14. The shadow colours of 6GY8/14 fall approximately on
this line. The value on the neutral axis is not always -1.6, but usually varies between
0 and -2, depending on the original colour.
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Figure 1: Munsell Hue Sheet for 6GY

This paper derives shadow series in the Munsell system. An exhaustive computer
calculation inverts the Munsell renotation1, which is an empirical conversion of Mun-
sell coordinates to (x, y, Y ) coordinates. Its inverse2−5 converts the (x, y, Y ) system
to the Munsell system. When plotted in the Munsell system, the calculated shadow
colours are observed to fall approximately along straight lines, which generally cross
the neutral axis below the value 0, but above the value -2. Rather than relying on
visual inspection, the linearity is demonstrated rigorously. Though hues are approx-
imately constant in a shadow series, the calculations do identify a slight, systematic
tendency towards the yellow part of the spectrum as a colour is seen more deeply in
shadow.

An examination of the form of shadow series in the Munsell system suggests
the hypothesis that ideal black and white should not have their current Munsell
coordinates of N0 and N10. Without physical samples, there is no empirical way to
determine how many perceptual value steps ideal black is below N1, nor how many
steps ideal white is above N9. Extrapolating the linear shadow series beyond the
renotation data, which extends from values 1 through 9, suggests that ideal black
is probably near N(-1), while ideal white is slightly lighter than N10, in terms of
perceptual value steps.

Much of the current paper can be seen as a rigorous refinement and extension

c© 2011 Paul Centore 2



SHADOW SERIES IN THE MUNSELL SYSTEM

of Ralph Evans’s investigations in the late 1960s6,7. In his work, Evans made some
simplifying assumptions which, the current paper shows, can be demonstrated di-
rectly, or removed entirely. To maintain his model, for example, Evans knowingly
disregarded some data for Munsell values 1 and 9. In fact, this data can be included,
if Evans’s model is reformulated. By today’s standards, a lack of computing power
hampered Evans. Our increased calculational capabilities can eliminate much of the
simplification that was necessary in his day.

Though some early formulations of the Munsell system incorporated shadow series
implicitly, this paper argues that today’s Munsell system should be viewed as a purely
perceptual system. In this light, the current calculations relate a human phenomenon
(perception) to a physical phenomenon (shadow series). Though it turns out that
shadow series take a surprisingly simple linear form, no explanation for that form is
attempted here.

2 Derivation of Shadow Series

Suppose that an object has a constant, non-glossy, local colour. Local colour is un-
derstood to be the object’s colour, insofar as that colour is a result of the object’s
reflectance spectrum. Denote the reflectance spectrum by r(λ), where λ is a wave-
length varying from approximately 360 to 760 nm, and r takes on values between
0 and 100%. Suppose also that the only light illuminating this object also has an
unvarying spectral composition, s(λ). The intensity of s(λ) is assumed to produce
ordinary daytime, or photopic, vision.

Because of the object’s orientation relative to the light source (or sources), and
because of diffusion and interfering objects, some parts of the object receive more
light than other parts, which are in shadow. For example, a part in light might
receive light of spectral composition k1s(λ), while a part in shadow receives light of
spectral composition k2s(λ), where k1 and k2 are both between 0 and 1, and k1 > k2.
Note that only the intensity of the illumination changes, not its relative spectral
power density (SPD).

Relative CIE coordinates8 can be calculated for the object in light:

X1 =

∫ 760

360
x̄(λ)r(λ)k1s(λ)dλ∫ 760

360
ȳ(λ)s(λ)dλ

, (1)

Y1 =

∫ 760

360
ȳ(λ)r(λ)k1s(λ)dλ∫ 760

360
ȳ(λ)s(λ)dλ

, (2)
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Z1 =

∫ 760

360
z̄(λ)r(λ)k1s(λ)dλ∫ 760

360
ȳ(λ)s(λ)dλ

, (3)

where x̄, ȳ, and z̄ are the standard CIE colour-matching functions. Equations (1)
through (3) can be transformed to chromaticity coordinates:

x1 =
X1

X1 + Y1 + Z1

, (4)

y1 =
Y1

X1 + Y1 + Z1

, (5)

Y1 = Y1. (6)

The CIE coordinates for the object in shadow can be calculated by replacing k1

with k2 in Equations (1) through (3). We then get the relationships

X2 =
k2

k1

X1, (7)

Y2 =
k2

k1

Y1, (8)

Z2 =
k2

k1

Z1. (9)

(x, y, Y ) for the shadow colour can be calculated from the formulas in Equations (4)
through (6), replacing the subscript 1 with the subscript 2. Making this replacement,
and combining the results with Equations (7) through (9) gives

x1 = x2, (10)

y1 = y2, (11)

Y1 =
k1

k2

Y2. (12)

Equations (10) through (12) show that a colour’s chromaticity coordinates are the
same, whether the colour is in light or shadow. The relative luminance, on the other
hand, is less for a colour in shadow, than for that same colour in light. A shadow
series is a sequence of colours, that results from casting an increasing amount of
shadow on the first colour. The colours in a shadow series share the same x and y,
but Y becomes progressively smaller.

Equations (10) to (12) make it straightforward to generate shadow series in
(x, y, Y ) coordinates: fix x and y, and let Y vary. The smallest value for Y, in
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theory at least, is 0. For each fixed x and y, there is a maximum Y value that pro-
duces a physically realizable colour. A colour whose Y value is maximal is called an
optimal colour. Optimal colours vary with the illuminant. Tables of optimal colours
have been calculated for standard illuminants such as A and D659, and C10.

A set of shadow series was generated for analysis. Each shadow series began
with an optimal colour for Illuminant C, which is the standard illuminant for the
Munsell system1. The optimal colours used were those listed by David MacAdam10.
The Munsell renotation data does not always extend to the MacAdam limits, so the
optimal colour could sometimes not be inverted. In this case, the Y value for the
optimal colour was reduced until its inverse could be calculated. The series analyzed
here consisted of all Y values, less than the maximal Y, which corresponded to an
integer Munsell value. For example, a luminance factor of Y = 30% occurs when the
Munsell value, V, is about 6. An invertible quintic polynomial, Eq. (2) of ASTM
D1535-084, was used to convert between V and Y. It is only necessary to consider
shadow series of optimal colours, becaues the shadow series of a non-optimal colour,
(x, y, Y ), is a subset of the shadow series of the optimal colour (x, y, Ymax), where
Ymax is the largest Y value possible for a colour of chromaticity (x, y).

3 Shadow Series in the Munsell System

An inverse5 to the Munsell renotation was used to convert the shadow series from
xyY coordinates to Munsell coordinates. Strictly speaking, the Munsell renotation
and its inverse only apply when s(λ) has the same relative SPD as illuminant C.
As long as s(λ) is generally broadband, however, chromatic adaptation will insure
that the inverse renotation gives a good approximation to the Munsell coordinates.
The Munsell renotation presents xyY coordinates only for colours of integer Munsell
value. Extending or inverting the renotation for non-integer values requires interpola-
tion, which different researchers might perform differently, particularly for values less
than 1 or greater than 9. To mitigate these differences, the shadow series that were
analyzed consist of only samples of integer Munsell values. In addition, a shadow
series was analyzed only if it contained at least three colours. In all, 182 shadow
series, comprising 1202 colour samples, were calculated and analyzed.

Each shadow series was plotted on two Munsell graphs, one showing value and
chroma, and the other showing hue and chroma. Figures 2 and 3 plot the shadow
series for 6GY8/14. In Figure 2, the shadow series appears as a slightly irregular
line, starting at value 8 and chroma 14. The values in the shadow series progressively
decrease as the colours get darker. It can be seen that the chroma decreases, too.
Consecutive points have been joined by a line. A least squares line was fit to the
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Figure 2: Chroma vs. Value Plot for
Shadow Series of 6GY8/14

Figure 3: Chroma vs. Hue Plot for
Shadow Series of 6GY8/14

shadow series, and appears in the figure, extending beyond the original shadow series.
In Figure 3, the hues and chromas of the shadow series were plotted on a polar

plot. The radial direction is chroma, running from 0 to 35. The angular direction
represents Munsell hue, divided into ten regions that are equally spaced perceptually.
Since the shadow series decreases in value as it becomes darker, the series is lightest
when it is far from the origin, and darkest when it is near the origin.

Figures 4 and 5 each plot all 182 shadow series. Figure 4 plots only chroma and
value, disregarding hue. Figure 5 plots only chroma and hue, disregarding value.

3.1 Value-Chroma Relationships

The shadow series in Figure 2 seems to fall nearly on a straight line, as do the
series in Figure 4. Previous researchers6 had already noted this phenomenon, and
used linear approximations. The current paper justifies the linear approximations
quantitatively. Table 1 lists the values and chromas associated with the shadow
series for 6GY8/14, and lists alongside them the values and chromas for the least
squares line that approximates the shadow series. This least squares line is given by
V = 0.67C − 1.58. The Munsell value differences have also been calculated.

A human observer can distinguish between 40 and 45 greys between black and
white. Since the total value difference between black and white is ten value steps,
human resolution is good to somewhere between 0.2 and 0.3 value steps. In other
words, if two colours differ by less than 0.2 in Munsell value, and agree in hue and
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Figure 4: Chroma vs. Value Plot for Shadow Series of Optimal Colours

Inversion Chroma Inversion Value Least Squares Value Value Difference
14.00 8 7.788 0.21
12.85 7 7.019 0.02
11.42 6 6.062 0.06
9.97 5 5.089 0.09
8.43 4 4.057 0.06
7.06 3 3.141 0.14
5.50 2 2.099 0.10
3.48 1 0.745 0.25

Table 1: Shadow Series and Least Squares Approximation for 6GY8/14
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Figure 5: Chroma vs. Hue Plot for Shadow Series of Optimal Colours

chroma, then a human cannot tell them apart. This case occurs consistently in Table
1. Since the greatest value difference is 0.25, the shadow series and its least squares
approximation would be indistinguishable to most observers, while a few observers
might just barely notice an occasional discrepancy. Since the Munsell system reflects
human visual capabilities, the least squares approximation is valid.

Similar value differences were calculated for all 1202 colours, in all 182 shadow
series. Figure 6 shows a histogram, from which it can be seen that 79% of the
differences are less than 0.2, 14% are between 0.2 and 0.3, and 4% are between 0.3
and 0.4. The remaining 3% are greater than 0.4, and taper off quickly. If the shadow
series were all replaced with their least squares approximations, the replacements
would be imperceptible 79% of the time, borderline perceptible 14% of the time,
and perceptible, but minimal, in another 4%. Only about 1 out of 30 colours would
show a significant difference. Given that the Munsell renotation contains a fair bit of
smoothing and extrapolation, perfect agreement is not to be expected. From the very
good agreement that we do see, we conclude that shadow series fall along straight
lines.

Least squares lines were used because they are well documented and understood,
but other approximating lines are possible. For example, one could use the line
V = 0.67C − 1.53, instead of the line V = 0.67C − 1.58, for 6GY8/14. Then the
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Figure 6: Value Differences in Least Squares Approximations to Shadow Series

maximum difference in Table 1 would be 0.20, instead of 0.25, so there would be no
question of discrepancy. Using such lines throughout would shift the data in Figure
6 towards the left, strengthening the conclusion that shadow series fall along straight
lines. In the interest of simplicity, however, the analysis in this paper used only the
familiar least squares lines.

Figure 4 shows that the least squares lines tend to cross the value axis somewhere
between 0 and -2. The mean y-intercept of the 182 least squares lines is -1.18, the
median y-intercept is -1.16, and the standard deviation is 0.75. Extreme values of
-4.97 and 0.70 are obtained, but the bulk of the crossings lie between 0 and -2.

3.2 Value-Hue Relationships

Figure 5 examines how shadows affect hues. We have already seen that chroma
decreases as shadows become darker, so the shadow series in Figure 5 are all lighter
far from the origin, and darker nearer the origin. If there were no change in hue as
a colour became more shadowed, then each shadow series would be a straight line
that would cross the origin when extended. We see that this is approximately true
for most of the shadow series, but that there are also a few consistent deviations.

In particular, hues in the sector from YR to RP seem to shift counterclockwise
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as they become darker. A reddish colour seen in shadow would shift towards orange,
which becomes brown when viewed as a darker, related colour. Similarly, orange seen
in shadow would shift towards a yellowish brown. In painters’ terms, these colours
would be said to exhibit warm shadows. Similarly, hues in the sector from BG to
PB seem to shift clockwise as they become darker, and also exhibit warm shadows,
although the effect is not as pronounced as in the orange-red sector. In general, hues
in shadow tend to move slightly towards the warmer, yellow part of the spectrum.

3.3 Ideal Black and White in the Munsell System

An ideal black pigment would be a pigment whose reflectance spectrum is identically
0, so that it reflects no light. A colour seen in progressively darker shadow also reflects
progressively less light. In the limit, when no light is hitting it, any colour would
be an ideal black, regardless of its chromaticity. Every shadow series, then, should
terminate in ideal black. Since shadow series in the Munsell system are straight lines,
we can extrapolate them until they cross the neutral axis at zero chroma, and the
crossing point should be ideal black. While there is some variation in the crossing
points, they cluster around N(-1.2), so N(-1.2) seems like a good candidate for ideal
black. In the Munsell renotation, however, an ideal black would have a luminance
factor of 0, so its Munsell designation, according to both Newhall1 and the ASTM4.
should be N0. There are thus competing designations for ideal black.

A difficulty is the lack of an ideal black pigment to use when establishing the
Munsell renotation. On p. 417 of his renotation paper1, Newhall refers to a “painter,”
who prepared the samples for testing. Like today, even the blackest artist’s pigments
are not true blacks; rather, their values are approximately 1. It could be decided, a
priori, that the Munsell renotation should assign N0 as ideal black, and N10 as ideal
white. The experimenters could determine what value differences in the available
greys were perceptually equal, so N1 is the same perceptual distance from N2, as N2
is from N3, N3 from N4, and so on, up through N9. Without a sample of ideal black,
however, there is no way to determine how dark a grey is perceptually one tenth of
the way from black to white. The assignment of the darkest black samples to N1,
then, must have been a convenient approximation.

According to this approximation, the step from N2 down to N1 should equal
perceptually the step from N1 to N0. Since this equality has not been verified
empirically, it is still an open question. The shadow series crossing points seem to
indicate that ideal black should in fact be 2.2 value steps down from N1. In practice,
the position of ideal black in the Munsell system is not important because very few
colorants are darker than N1. The Munsell system is thus adequate for realistic
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situations, and of course its perceptually equal steps are still perceptually equal.
Some research suggests that ideal black occurs perceptually when the luminance

factor is very low, but not quite zero. Evans7 noted a “black point,” for experiments
with coloured lights. Below a certain luminance level, and when surrounded by a
brighter stimulus, observers classified a light as black, even though there was still
some luminance. The black point seems to vary with chromaticity. If such a black
point also applies to non-self-luminous colour samples, then a shadow series might
terminate before it reaches the neutral axis. In that case, the crossing point would not
indicate ideal black. Furthermore, the termination point might differ for different
chromaticities, which could explain the standard deviation of 0.75 value steps in
crossing points.

Similar considerations apply, though with less force, to ideal white. A pigment’s
colour would be ideal white if that pigment diffusely reflected 100% of the impinging
light. While very few colorants are darker than N1, many colorants are lighter than
N9. For example, Ralph Mayer11 shows the reflectance curves for two chemical
formulations of titanium white (pigment PW6), the standard artist’s white since
the early twentieth century. The reflectance curves are practically flat, indicating a
neutral colour with a 96% luminance factor, greater than the 80% luminance factor
associated with Munsell value 9. Despite examples of very light colours, there is no
way to judge, without a sample of ideal white, that N9 is 90 percent of the way,
perceptually, from ideal black to ideal white, or that the perceptual step from N8 to
N9 equals the perceptual step from N9 to ideal white (which should be N10).

Further evidence that ideal white should not be mapped to N10 comes from
extending shadow series past Munsell value 9. Figure 7 shows these extensions for
24 chromaticities. The extensions all shift pronouncedly to the right, and do not
form a straight line with the rest of the shadow series. One possible explanation is
the linear interpolation used by the renotation inversion. Since the renotation data
for value 10 consists of a single point, interpolation between values 9 and 10 is tricky,
and linear interpolation might be inappropriate. Another possibility, however, is
that ideal white should be placed higher than N10, say at N10.3. Then the inversion
results for values greater than 9 would shift back towards the left, in line with the rest
of the shadow series. This question would be best resolved empirically, by human
assessments of the number of value steps between N9 and very light neutral samples.
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Figure 7: Shadow Series that Extend Past Munsell Value 9

4 Comparison with Previous Work

4.1 Evans’s Investigations of the Late 1960s

Although shadow colours were not a primary interest, Ralph Evans’s research in the
late 1960’s, summarized in The Perception of Color7, dealt with shadows indirectly.
In particular, Evans studied a circular stimulus, in the presence of a surround, usu-
ally lighter than the stimulus, and observed the results when the luminance of the
stimulus varied. When the stimulus and the surround are of the same chromaticity,
the stimulus could be interpreted as a shadow cast on a surface (the surround) by a
circular object such as a dime. The relative luminance of the stimulus would vary
with the distance of the dime, the properties of the air, the directness or diffuseness
of the light source, and so on.

Lacking today’s computer power, Evans’s calculations were limited, and he had
to rely on simple descriptive models. Today’s increased processing capabilities allow
a more refined look at the data. We can now directly verify some aspects of Evans’s
models, rather than assuming them, and replace some of his simplifications with
more detailed descriptions.

Figure 9-1 of The Perception of Color7 plots lines of constant chromaticity on
a chroma-value plot. That figure’s lines intersect the neutral axis about 1.5 value

c© 2011 Paul Centore 12



SHADOW SERIES IN THE MUNSELL SYSTEM

steps below 0, not far from the average crossing point of -1.2 in Figure 4. Figure 9-1
originally appeared as Figure 6 of a 1968 paper6. In Item (a) on p. 580 of that paper,
the authors postulated both that shadow series would fall along straight lines, and,
furthermore, that all those lines would intersect at a common point on the neutral
axis. By visual inspection, this common point was judged to occur at N(-1.5). The
current paper shows that the straight line postulate can be verified directly from
the renotation data, and is thus a quantitative conclusion rather than a simplifying
assumption. In addition, Evans’s postulate of a common intersection point is a good
approximation, but not strictly satisfied. The more detailed look in the current paper
shows that the intersection point with the neutral axis can vary to within about two
value steps. Furthermore, the second and third paragraphs on p. 581 of the 1968
paper6, mention that colours of Munsell values 1 and 9 were not used, because they
did not conform to the postulate of a common crossing point. The current paper
includes values 1 and 9, and shows they are consistent with a varying crossing point.

In addition, p. 159 of The Perception of Color7 noted that hue shifts occurred in
shadow series, but did not pursue the matter any further. The current paper shows
that hues tend to become yellower, as shadows become darker.

4.2 Munsell’s Colorimetric Formulation

Albert Munsell originally offered two formulations of his colour system. The first was
completely perceptual, involving the familiar hue, value, and chroma. The second
was colorimetric, involving visual mixing on a Maxwell disk. As Tyler and Hardy12

document, Munsell asserted that two colours, H1V1/C1 and Hc
1V2/C2, would mix to

grey when spun on a Maxwell disk if the disk areas they occupied were proportional
to V2C2/V1C1, where Hc

1 is the complement, in terms of mixtures of light, of H1.
The original Munsell system assumed that hue could be identified with dominant
wavelength, so that complementary hues were defined without regard to value or
chroma. The original system also assumed that Y = V 2/100. These two assump-
tions are now known to be good approximations, but not exact statements. On pp.
600-601 of a 1940 paper13, Gibson and Nickerson show mathematically that, under
these assumptions, Munsell’s disk criterion implies that shadow series in the Munsell
system all fall along straight lines, and all originate at N0.

Early physical Munsell exemplifications tried to satisfy both the perceptual and
colorimetric formulations, but analysis, for example Fig. 8 of Gibson and Nickerson’s
article13, showed that the formulations were often in conflict. In practice, colour sam-
ples were chosen by perception rather than by colorimetry. As a result, the Munsell
renotation abandoned the colorimetric formulation. In his preliminary renotation
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report14, Newhall documents that the human colour assessments for the renotation
were solely perceptual, without any reference to Maxwell disks or colorimetry.

Since the Munsell renotation was based solely on judgements of hue, value, and
chroma, with no regard for shadows, it is surprising that shadow series take such a
simple form as straight lines. While it is tempting to regard their form as a legacy of
Munsell’s colorimetric formulation, that explanation seems unlikely, because, from
the earliest days, perception took precedence over colorimetry. Even if the 1929
Munsell samples, which Newhall1,14 took as a starting point, had contained many
shadow series that were straight lines through N0, it would be remarkable for the
renotation to shift series, by different value or chroma adjustments all along their
length, so that their straightness was maintained, and the points at which they
crossed the neutral axis were all lowered by different amounts. Instead, it seems
more reasonable to disregard Munsell’s colorimetric formulation, which was never
adhered to strictly, and take the Munsell system as a purely perceptual system.
Seen in this light, the linearity of shadow series in the Munsell systems must be
taken as an observed relationship, whose explanation is currently an open question.
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