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Abstract

The familiar chromaticity diagram consists of all the chromaticities that can be
perceived in what might be called a state of neutral adaptation. In the von Kries model,
different states of chromatic adaptation modify the retinal cones’ responses, which in
turn modify the perceived chromaticities of colour stimuli. This paper demonstrates
mathematically that, in fact, each state of adaptation has its own chromaticity dia-
gram (with significant overlap between the diagrams). The von Kries model is shown
to predict that these new diagrams contain some colours that are outside the ordinary
chromaticity diagram. This observation then necessitates enlarging the standard chro-
maticity diagram into a total chromaticity diagram, consisting of all chromaticities, that
can occur in any adaptive state. The total diagram, which is calculated explicitly, is a
superset of the standard diagram, and is approximately triangular in cone-fundamental
space. As an application, the new diagram helps explain the high chromas sometimes
seen in the Helson-Judd effect.

1 Introduction

In everyday life, chromatic adaptation insures that the prevailing illumination is perceived
as a neutral, achromatic “white.” As a side effect of neutralizing the illuminant, all colours
are shifted somewhat. The von Kries model1 is a longstanding hypothesis which attributes
the shifts to three gain coefficients, operating independently on the three classes of retinal
cones. Each coefficient adjusts a cone output by a multiplicative factor. The adjustments
“discount the illuminant,” so that an object’s colour appears as it would when viewed in a
neutral light, rather than being tinged with the hue of the actual illuminant. When lighting
changes, the human visual system’s state of adaptation changes with it, as the von Kries
coefficients adjust to the overall lighting situation.

A colour can be decomposed mathematically into a luminance (specifying the colour’s
lightness or darkness) and a chromaticity (loosely speaking, the colour’s hue and saturation).
The familiar chromaticity diagram,3 which we will denote D, is a two-dimensional represen-
tation, based on the 1931 Standard Observer4 defined by the Commission Internationale de
l’Éclairage (CIE), of the set of chromaticities. This standard diagram is implicitly based
on what might be called the “neutral” state of adaptation, which occurs, for instance in a
standard colour-matching experiment, where an observer views small stimuli, typically sub-
tending no more than a few degrees, against a black background. As this paper will show,
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however, many chromaticities occur only in non-neutral states, and so are left out of D.
To encompass all chromaticities, this paper will expand the standard diagram into a total
chromaticity diagram T . The total chromaticity diagram contains the standard chromaticity
diagram as a subset, and also contains many new chromaticities outside it.

The foregoing statements will be proven mathematically, along with explicit calculations.
A geometric setting5 will allow easy visualization. The colours specified by the 1931 Standard
Observer fill out a convex, asymmetric spectrum cone C in a real, three-dimensional vector
space, sometimes called colour space. CIE XY Z coordinates provide a standard basis for
this space. The standard chromaticity diagram is the two-dimensional section that results
when the spectrum cone is cut by the plane X + Y + Z = 1. A set of CIE xy coordinates is
conventionally used for this diagram.

The CIE’s XY Z coordinates were standardized without reference to the three classes of
retinal cones, whose properties were unknown in 1931. Today the retinal cones are much
better studied. As a result, we can use an alternate set of LMS coordinates, where L,
M, and S indicate the cones that respond predominantly to long-, medium-, and short-
wavelength stimuli. A colour’s LMS coordinates is a linear transformation of its XY Z
coordinates. In fact, one could use the transformation to define an alternate basis for colour
space that consisted of an L-vector, an M -vector, and an S-vector. The spectrum cone
could be expressed equally well in LMS coordinates as in XY Z coordinates, and could be
similarly sliced by the plane L + M + S = 1. lm coordinates can be assigned, analogous to
xy coordinates, so an lm chromaticity diagram will be constructed. We will move as needed
between the xy and lm diagrams.

Mathematically, the von Kries transform T for a given set of coefficients is a linear
operator on three-dimensional colour space. In fact, the three coefficients, which are always
positive, are eigenvalues for the transform, and the eigenvectors are the L-, M -, and S-
vectors. The input of T is the XY Z vectors that would occur if a colour stimulus (a light
beam that strikes the retina) were viewed in a neutral state of adaptation. T is restricted
to real stimuli, so the domain of T (i.e. the set of all possible inputs) is therefore the XY Z
spectrum cone C. The output of T is a new vector in colour space, which corresponds to the
colour the viewer perceives. The main mathematical insight of this paper is the observation
that the image T (C), given T ’s diagonal form, is another cone that overlaps its domain C
significantly, but also (except in trivial cases) extends beyond C. The colours that are in T (C),
but not in C itself, have no representation in the CIE system, yet are still genuine perceptions.
The chromaticities of such colours are not contained in the standard chromaticity diagram.

This paper’s main contribution is the construction of a total chromaticity diagram T that
does contain them. To begin with, we will work in LMS and lm coordinates, where von Kries
transforms have a more convenient form. In fact, we will find that the lm plane is usually
sufficient, and its easy visualizability will aid understanding. Next we will consider the set of
all possible von Kries transforms. Since a von Kries transform is induced by the chromaticity
of the prevailing illumination, we can parametrize the set of von Kries transforms by the lm
chromaticity diagram. By considering the transform resulting from each lm chromaticity,
we account for all possible von Kries transforms. Now suppose that an lm chromaticity c,
and thus a von Kries transform Tc, has been specified. The set of all possible chromaticities
that Tc can produce is the image under Tc of the entire lm chromaticity diagram L. The
image Tc(L) can be drawn in the same plane, L + M + S = 1. It largely overlaps L, but
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(except in the case of the identity transform) there will also be some new chromaticities that
are outside L. To find T , the set of all possible chromaticities, let c run over all possible
chromaticites, and take the union of the resulting von Kries images:

T =
⋃
c∈L

Tc(L). (1)

This T is then the total chromaticity diagram.
The paper is organized as follows. First, some background is given, consisting largely of

a geometric description of colour space, the spectrum cone, and the standard chromaticity
diagram; both CIE and cone coordinates are used. The von Kries model and some formalism
for it are also presented. Second, the derivation of the total chromaticity diagram is detailed.
The set of all von Kries transforms is shown to be indexed by L, and the union of the images
of L under all von Kries transforms is calculated, producing the total chromaticity diagram
T . Third, there is a brief description of how T helps explain the high chromas sometimes
seen in the Helson-Judd effect. Finally, a short summary of the paper is given.

2 Chromatic Adaptation

2.1 Neutral Adaptation

In a traditional colour-matching experiment, a subject views two colours side-by-side, through
an aperture. The colours themselves, which typically subtend a small angle of perhaps 2◦,
are viewed against a null background, which contains no visual stimulus and so appears
black. Since the colours take up very little area, and since there is no other stimulus, the
eye might be said to be in a state of neutral adaptation. The 1931 CIE Standard Observer4

implicitly assumes such a neutral state.
Though they are very different physically, two side-by-side stimuli can still appear iden-

tical to an observer. In fact a colour can be defined as the maximal set of physical stimuli
which appear identical in a standard colour-matching experiment. Further analysis5 involv-
ing Grassmann’s laws implies that the colours that the Standard Observer distinguishes fill
an irregularly shaped convex cone, called the spectrum cone, in a real, three-dimensional
vector space. The boundaries of the cone, as shown in Figure 1, are rays corresponding to
monochromatic colours, that have power in only a single wavelength. The 1931 standard
assigns the vector space a basis of three vectors, conventionally denoted X, Y, and Z, and
any colour can be assigned XY Z coordinates. Many, in fact most, XY Z triples are mathe-
matical fictions, or imaginary colours, which cannot be produced by any physical stimulus.
The three axes themselves are imaginary: no physical stimulus, for instance, can produce
only an X-response, without also producing a Y - or Z-response. X, Y, and Z were chosen so
that all real colours would have non-negative XY Z coordinates, making the spectrum cone
a subset of the positive octant.

While the spectrum cone itself is three-dimensional, an informative two-dimensional sub-
set of it can be constructed, called the chromaticity diagram D, by cutting the spectrum
cone with the plane X + Y + Z = 1, as shown in Figure 1. Every ray through the origin in
the spectrum cone intersects that plane in a unique point. The plane is given its own system
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Figure 1: The XY Z Spectrum Cone, Cut by the Plane X + Y + Z = 1
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of chromaticity coordinates:

x =
X

X + Y + Z
, (2)

y =
Y

X + Y + Z
, (3)

so every colour has an xy chromaticity. Figure 2 shows the chromaticity diagram as it is
typically presented, with its x and y axes transformed to form a right angle. The boundary
of the chromaticity diagram, called the spectrum locus, intersects all the monochromatic rays
in the visible spectrum, from 400 to 700 nm, as shown in the figure.

Chromaticity is often broken down further into a hue and a saturation component. Figure
2 shows the approximate locations of various hues in the chromaticity diagram. A central core
of whites, or colours without discernible hues, is surrounded by a rainbow of basic hues like
red, orange, yellow, etc. The colours near the spectrum locus are very vivid and saturated,
and the saturation decreases steadily as one moves inward. The “center” of the diagram,
though not defined exactly, will be taken to be (x, y) = (0.31, 0.33), the chromaticity of
Illuminant D65.

The familiar chromaticity diagram D contains the chromaticity of every colour that can
be perceived in the context of standard colour-matching experiments. Those experiments,
however, implicitly impose a neutral adaptation. We will soon see that other states of
adaptation allow further chromaticities, outside D.

2.2 Cone Fundamentals

The human retina contains three kinds of cones that respond physically to incoming light:
L cones that respond mainly to longer wavelengths, M cones that respond to middle wave-
lengths, and S cones that respond to shorter wavelengths. The relative magnitude of the
cone responses depends on the chromaticity of the light they are responding to. While LMS
responses have yet to be measured directly, one can show mathematically that the LMS
responses are a linear transformation of the XY Z responses. Many numerical forms of the
transformation have been proposed; this paper will use the Hunt-Pointer-Estevez2 (HPE)
matrix: LM

S

 =

 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464

0.0000 0.0000 1.0000

XY
Z

 . (4)

L, M, and S can be viewed as vectors, defined by Equation (4), in the same three-
dimensional space as X, Y, and Z. Mathematically, in fact, LMS and XY Z are just two
different but interchangeable bases for three-dimensional colour space. The spectrum cone
can be drawn in LMS coordinates just as readily as in XY Z coordinates. Chromaticity
coordinates l and m can be defined in LMS space by cutting the spectrum cone with the
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plane L+M + S = 1 (see Figure 3), just as x and y are defined in XY Z space:

l =
L

L+M + S
, (5)

m =
M

L+M + S
. (6)

Figure 4 shows the resulting lm chromaticity diagram, which we will denote L.

2.3 The von Kries Model

Colour-matching experiments typically display a stimulus against a black background, in-
ducing what we have called a neutral adaptation. The same stimulus, however, can appear
different when viewed against another colour, or in a more complicated setting, and it has
been concluded that the visual system adapts to the viewing conditions. When viewing
a realistic scene, the eye receives a multitude of stimuli, most of which are influenced by
the prevailing illumination. By a mechanism that is not yet understood, the visual system
extracts sufficient information about the lighting that it can automatically adjust its colour
perceptions, in a process called chromatic adaptation.

At the start of the twentieth century, Johannes von Kries1 proposed a model, sometimes
called the ‘von Kries hypothesis, for chromatic adaptation. The model relates two sets of
responses:

1. (Ln,Mn, Sn) : the initial cone responses, due solely to physical causes, without any
adjustment, and

2. (La,Ma, Sa) : the post-adaptation cone responses.

They are related by simple coefficients:

La = kLLn, (7)

Ma = kMMn, (8)

Sa = kSSn. (9)

The relationships can also be written as a linear transformation:La

Ma

Sa

 =

 kL 0 0
0 kM 0
0 0 kS

Ln

Mn

Sn

 . (10)

The linear transformation in Equation (10), called a von Kries transform, has a special form:
not only is it diagonal, but all its eigenvalues are positive, and the three eigenvectors are
always just the L, M, and S axes.

These relationships can result in colour constancy. Suppose a subject is viewing an object
under some prevailing illumination I, where I is a power function over the visible spectrum.
I, for example, could result from incandescent lighting, fluorescent lighting, indirect daylight,
etc. The object has a physically invariant reflectance spectrum ρ, which is also a function
(between 0 and 100%) over the visible spectrum. The stimulus that reaches the eye is then
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Figure 3: The LMS Spectrum Cone, Cut by the Plane L+M + S = 1
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Iρ, and this stimulus varies greatly as I varies. Colour constancy, which has been observed
empirically, means that the object’s colour appears the same to the observer, even as lighting
changes from incandescent to fluorescent to natural, and so on.

Chromatic adaptation is needed for colour constancy. The idea is that the visual system
adapts to the illumination by heightening or reducing the sensitivity of each kind of cone.
The coefficients kL, kM , and kS quantify the adjustment. Without any adjustment, a stimulus
would produce some cone responses Ln, Mn and Sn in an unadapted observer. The visual
system, applying Equations (7) through (9), adapts by multiplying the raw responses by kL,
kM , and kS. The result is La, Ma, and Sa, which is just the coordinates the object would
produce if the object were neutrally illuminated. The observer then perceives the object’s
colour as the colour it would have in a neutral setting, so the illumination has been corrected
for.

As an example, suppose an adapted viewer observes a blank white canvas hanging on a
wall, in a windowless room illuminated with a greenish light. In a colour-matching experi-
ment, against a null background, that light has CIE coordinates XY Z = (42.0, 100.0, 25.0),
which implies LnMnSn = (83.3, 109.9, 25.0). The greenish light reflects off the canvas; the
reflected light is the same shade of green. The light reflected from the canvas enters the
viewer’s eye and produces those values as its unadjusted physical cone response: LnMnSn =
(83.3, 109.9, 25.0). The viewer, however, is adapted to the greenish illuminant, and discounts
it with coefficients kL = 11.7, kM = 9.2, kS = 43.5, producing adapted signals

La = kLLn = 11.7 · 83.3 = 975 (11)

Ma = kMMn= 9.2 · 109.9 = 1011 (12)

Sa = kSSn = 43.5 · 25.0 = 1083. (13)

The adapted LaMaSa values can be converted to XY Z values of (957, 998, 1083), which are
consistent with Illuminant D65, a white light. The viewer will therefore perceive the white
canvas as white, even though the light the canvas sends to his eye is green.

A numerical issue arises when using the von Kries model for long-wavelength monochro-
matic stimuli. The Z values for wavelengths of 650 nm or greater is 0, and the HPE matrix,
whose bottom row is [0, 0, 1], sends the Z value directly to the S value. Then both sides of
Equation (9) are 0, so that kS is undefined, and the von Kries model cannot be applied. To
handle this situation, no calculations were made on stimuli that only took on positive values
between 650 and 700 nm inclusive. When a calculation was needed at 700 nm, the 700 nm
point was replaced with a point we denote ∼700 nm, which is one-hundredth of the way
along the line joining 700 nm to 400 nm. These adjustments chop a barely visible notch off
the bottom right corner of the lm diagram, and do not affect the calculations significantly.

3 Derivations and Calculations

Now that the von Kries model has been introduced, we can use it to calculate the total
chromaticity diagram, which consists of all possible chromaticities, occurring over all possible
states of adaptation. Each physically possible illuminant takes on a chromaticity in the lm
chromaticity diagram shown in Figure 4, so there is one set of von Kries coefficients (up to
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a multiplicative factor) for each lm chromaticity. The lm chromaticities thus serve to index
the set of von Kries transforms. Equation (10) allows the image of a von Kries transform
to be calculated. Any transform’s domain can be taken to be the set of lm chromaticities.
Most of its image will consist of lm chromaticities from Figure 4, but some points in the
image will be outside that diagram. The union of all the images of all possible transforms is
the total chromaticity diagram T .

The following subsections work out the steps in the above development. It will be seen
that the derivations could take place equally well in two-dimensional chromaticity space
(using chromaticity diagrams) or three-dimensional colour space (using cones). We will focus
predominantly on the two-dimensional case, where helpful pictures can be drawn easily.
Convexity results, which take advantage of the special form of von Kries matrices, will
significantly simplify calculations.

3.1 The Set of All von Kries Transforms

Equation (10) writes a von Kries transforms as a diagonal matrix, whose diagonal entries
define the transform. While the three entries can vary, physical requirements imply that not
all sets of three numbers can occur as entries. To see why, rearrange Equations (7) through
(9) to get

kL = La/Ln, (14)

kM = Ma/Mn, (15)

kS = Sa/Sn. (16)

The von Kries coefficients on the left depend on two sets of LMS coordinates, one of which
is an adapted version of the other. Suppose we specify just one physically possible input,
and its adjusted output. Then those vectors define the coefficients, and therefore define the
transform, so we could calculate the image of any other input.

Empirical investigations show that a white or neutral, which we will take to be D65,
is always a possible perception, so on empirical grounds there is no loss of generality in
requiring that LaMaSa = (97.4, 101.6, 108.9), which are (up to multiplication by a constant)
the coordinates for D65:

kL = 97.4/Ln (17)

kM = 101.6/Mn (18)

kS = 108.9/Sn, (19)

Assigning an input vector that produces D65 as its output is then sufficient to define a von
Kries transform, and every von Kries transform can be specified that way. Thus the set of
von Kries transforms is in one-to-one correspondence with the set of colours in the LMS
spectrum cone.

Furthermore, since Equations (14) through (16) are invariant if the two LMS vectors
are multiplied by the same factor, and chromaticities do not change if the three von Kries
coefficients are all multiplied by the same factor, we can simplify matters by working in
two-dimensional chromaticity space instead of three-dimensional colour space. The lm coor-
dinates of D65 are (0.32, 0.33), so we can construct a von Kries transform by specifying which
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lm pair is mapped to (0.32, 0.33). A physical interpretation is that a scene is illuminated by
that lm pair, and chromatic adaptation uses a von Kries adjustment to insure that lm pair
is mapped to the chromaticity for D65. The set of von Kries transforms, restricted solely
to chromaticities, is therefore in one-to-one correspondence with the set of chromaticities in
the lm diagram shown in Figure 4.

This fact will be used in calculating the total chromaticity diagram. We will let lm vary
over all possible points in Figure 4, and find the von Kries transform corresponding to those
points. By the foregoing argument, this method will find all possible transforms. The union
of the images of all those transforms will then be the total chromaticity diagram T .

3.2 The Image of a von Kries Transform

This section uses a concrete example to illustrate the central observation of this paper: the
image of a von Kries transform is partly outside the lm chromaticity diagram L, and the
points that are outside represent new chromaticities that have not yet been accounted for;
they will take their places in the total chromaticity diagram.

In a previous example, a white canvas was viewed in a room illuminated by a greenish
light I, with LMS coordinates (83.3, 109.9, 25.0) and lm coordinates (0.38, 0.50). Chromatic
adaptation shifts I to Illuminant D65, whose lm coordinates are (0.32, 0.33) Both points are
shown in the lm chromaticity diagram in Figure 5.
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Figure 5: The Image of lm Chromaticities after Adaptation to I

By the discussion of the previous section, I leads to a unique von Kries transform TI ,
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completely determined by the condition that TI(I) = D65. The range of TI is the set

S = {TI(l,m)
∣∣(l,m) is in the lm chromaticity diagram}. (20)

Figure 5 indicates with arrows how TI moves I and the monochromatic spectrum locus
chromaticities to their images. Of course, all the other chromaticities are also moved. The
image of TI is the area that is bounded by the dotted line.

The most notable feature of S is that it contains points that are outside the original
chromaticity diagram: one can see a wedge just below the diagram L which is still inside S.
The colours corresponding to these outside points cannot be perceived in the normal state
of adaptation, but can be perceived under the green illuminant. By multiplying L, M, and
S by various coefficients, the von Kries transform has, for practical purposes, changed the
cone response functions, so that previously impossible colours can be produced. These new
colours will appear in the total chromaticity diagram T .

While the idea of new colours might seem implausible at first, the following thought
experiment should make it more believable. Suppose that there was some way to activate the
long-wavelength cones without simultaneously activating the medium- or short-wavelength
cones. Then one would expect that the colour perception produced in this way would be
outside , completely novel, and have no precedent in any colours experienced previously. Such
a condition would correspond to von Kries coefficients of kL = 1,, kM = 0, and kS = 0. Even
though Sect. 3.1 shows that those coefficients cannot be produced by any real illuminant, they
can still be considered as a theoretically extreme von Kries case. The von Kries coefficients
resulting from illuminants like the green light are not as extreme as the coefficients 1, 0,
and 0, but they are still extreme enough to produce colours outside the diagram, and those
colours could not be produced in normal illumination. The colours would therefore be new
to a viewer who had only experienced neutral lighting conditions.

3.2.1 Simplifying Calculations via Convexity

While we have worked so far in the easily visualized two-dimensional chromaticity plane,
similar derivations produce new colours in three-dimensional colour space. Linear transfor-
mations like von Kries transforms preserve convexity relations, so a von Kries image of the
spectrum cone C must be another convex cone. Like S, the image cone will mostly overlap
the original cone, but still introduce some points outside.

In the three-dimensional case these facts about the image cone can be inferred, at least
heuristically, from the form of the von Kries matrix in Equation (10). Apart from trivial
examples (like multiples of the identity matrix), no diagonal transformation would be ex-
pected to send a cone, especially a cone with an irregular profile, into a subset of itself. It is
not too surprising, then, to find that some of the image points are outside the original set
of colours in three dimensions, as well as in two.

Convexity arguments can also streamline calculations in the chromaticity plane. Since
the spectrum cone is convex, the corresponding chromaticity diagram is also convex: it is
the intersection of two convex sets (the spectrum cone and the plane L + M + S = 1),
and the intersection of two convex sets is again convex (Theorem 2.19 of Ref. 6). Now
suppose we start with a convex subset such as the chromaticity diagram D, of the plane
L+M +S = 1. Then the cone CD generated by D is also convex, and the image of CD under
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any von Kries transformation (indeed, under any linear transformation) is itself a convex
cone. The intersection of that convex cone with L+M + S = 1 is then convex, too.

In the current case, we applied TI directly to the convex chromaticity diagram in Figure
5, and produce S. Instead of applying TI directly, however, we could have taken the more
roundabout route of extending the diagram to a convex cone, applying the three-dimensional
von Kries transform to produce a new convex cone that was somewhat outside the first cone,
and then intersecting the new cone with L + M + S = 1. The result would still be the set
S, but the roundabout route shows that S must be convex. In general, we can see that a
von Kries transform preserves convex structures in the two-dimensional chromaticity plane
as well as in three-dimensional colour space.

(A von Kries transform in two dimensions is a projective rather than a linear transforma-
tion, and projective transformations do not always preserve convex structures. In this case,
though, the von Kries matrix is diagonal, and all its eigenvalues are positive. This form,
combined with the fact that we are working only in the positive LMS octant, guarantees
that convexity is preserved.)

Since convex structure is preserved, we can calculate S from only a few points. The lm
chromaticity diagram is the convex hull of its vertices, which are just the monochromatic
points on the spectrum locus. Since TI preserves convexity, the image of the diagram under
TI is just the convex hull of the images of its vertices. This argument justifies the form of S
seen in Figure 5, which is just a polygon joining TI(400 nm) to TI(410 nm) to TI(420 nm),
and so on through the visible wavelengths. This technique of evaluating convex sets only at
their vertices simplifies calculations for von Kries transforms.

3.3 The Total Chromaticity Diagram

The example in the previous section necessitated adding new chromaticities to the diagram
L. While that example considered just one von Kries transform, this section will consider
the set of all von Kries transforms simultaneously. The result will be a total chromaticity
diagram T that contains any chromaticity that could result from any state of chromatic
adapatation.

Such a diagram is the union of of all the sets like S, where the illuminant that generates
S is free to vary over all of D. Since the original chromaticity diagram is the convex hull of
the spectrum locus, and since the von Kries transform preserves convex structures, it follows
that T is the convex hull of the von Kries images of the chromaticities on the spectrum
locus. Figure 6 shows the images for some selected wavelengths on the spectrum locus, while
Figure 7 shows the convex hull of all the images. The latter figure is the total chromaticity
diagram T .

In Figure 7, the standard chromaticity diagram L is shaded a dark grey, while the total
chromaticity diagram T is shaded a light grey. The total chromaticity diagram contains the
standard chromaticity diagram as a subset, and extends considerably beyond it. While the
dotted line marks the boundary we calculated for T , the previous discussion shows that that
boundary is not known with much precision. A simple triangle, with vertices (0.00, 0.00),
(0.90, 0.10), and (0.15, 0.85), can therefore be taken as a handy representation of T .

A natural step at this juncture is to convert Figure 7 from LMS to XY Z coordinates,
and view T as a superset of the familiar xy chromaticity diagram of Figure 2. Unfortunately,
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the resulting figure is not well-defined. To see why, convert the vertex (0.15, 0.85) from lm to
xy coordinates. First, find a three-dimensional LMS vector with chromaticity coordinates
(0.15, 0.85). Any one will give the same conversion, so choose (0.18, 1.00, 0.00). Using the
HPE matrix to convert (0.18, 1.00, 0.00) to XY Z coordinates gives (−0.78, 0.69, 0.00). At
this point, the problem becomes apparent: the X value is negative, which means that the
vector as a whole is outside the positive octant, and the (non-negative) ray generated by
that vector will not intersect the chromaticity plane X + Y +Z = 1. Recall that one reason
for choosing the plane X + Y + Z = 1 was that it crosses every ray of the XY Z spectrum
cone. Now that chromaticity space has been expanded, the cone has also been expanded, so
much so that some rays do not cross X + Y + Z = 1, and therefore do not define any xy
chromaticity coordinates. Thus T must stay in lm coordinates.

3.4 Caveats

The derivations just presented draw conclusions in a valid manner from their premises, but
it should be remembered that the premises themselves have some uncertainty, inherited from
their empirical underpinnings. Revising these premises could modify our calculations and
produce a slightly different T , Likely these changes would be insignificant, especially since
the boundaries of the diagram are rarely reached in practice, but they should be noted for
further investigations.

The first such premise is the use of D65 as our “neutral” illuminant. While a reasonable
choice, one could just as reasonably choose many nearby illuminants, which might give
somewhat different diagrams.

The second premise is the von Kries model itself. While this model has been used and
investigated for over a century, it still is not clear how accurate it is (see Chap. 9 of Ref.
7). At the least, it usually provides a good approximation for commonly encountered cases.
The cases in this paper, however, extend well beyond that region to highly artificial cases
such as monochromatic illuminants, and the model might break down at these extremes.
Apart from the von Kries hypothesis, many other chromatic adaptation models have been
proposed. This paper’s calculations could easily be repeated with another model substituted
for the von Kries model, and their total diagrams compared.

The third premise is the use of the HPE matrix to convert between XY Z and LMS coor-
dinates. Many matrices have been suggested for this conversion. Another natural candidate
is MCAT02 (see Sect. 9.7 of Ref. 2). While MCAT02 has been thoroughly vetted and selected
by the CIE for its latest colour appearance model, it has the disadvantage of occasionally
producing negative LMS coordinates. On the other hand, it has the advantage of not pro-
ducing any coordinates of value 0, which the HPE matrix occasionally does; we saw earlier
that the von Kries model could not be applied to these cases. Overall, no unequivocally
correct conversion is known, which inevitably leads to some uncertainty in the calculation
of T .

If the premises mentioned here are some day replaced with more certain ones, then a
more accurate T could be calculated, but until then Figure 7 should be a good practical
approximation.
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4 High Chromas in the Helson-Judd Effect

The Helson-Judd effect2,8,9 occurs in a room which is illuminated solely by monochromatic
light. After adapting to that environment, subjects view a set of neutral Munsell samples,
whose reflectance spectra are non-selective (i.e. fairly flat), against a simple background.
Under these conditions, many subjects report that dark neutral samples take on a colour
complementary to the illuminant’s colour, sometimes with chromas that seem impossibly
high, as if a glowing light were superimposed on them.

The total chromaticity diagram might explain these apparently impossible perceptions.
Suppose, for instance, that the illumination has wavelength 450 nm. Then the von Kries
model predicts that all chromaticities will appear in the irregular region labeled 450 nm
in the bottom right of Figure 6. While some of this region overlaps with the standard
chromaticity diagram, a fair bit of it is also outside. Saturation, which is often used as
a rough approximation for perceptual chroma, is zero for practical purposes near white
illuminants like D65, and increases steadily as one moves towards the spectrum locus. Since
the region resulting from 450 nm extends considerably beyond the spectrum locus in some
directions, the saturations in those directions could plausibly increase to levels beyond those
encountered in normal illumination. In fact, they could represent colour perceptions that the
subjects had never experienced before. Almost by definition they would be beyond the limits
found in colour systems like Munsell or NCS, which are standardized on neutral illuminants.
As shown in Figure 6 of Ref. 10, an unnaturally saturated shadow colour will sometimes
seem to glow or emit light, which could explain the glow that the subjects report.

While many other aspects of the Helson-Judd effect remain mysterious, the total chro-
maticity diagram, and the von Kries model on which it is based, might suffice to explain the
high chromas that are sometimes reported. A monochromatic source will produce as extreme
a von Kries transform as possible. The boundary of the von Kries image of a monochromatic
source goes through the neutral region, and the image is limited to one side of L—the side
whose hues are complementary to the source. As a result, only complementary hues can be
seen. The neutrals themselves, such as the Munsell greys that observers view, are shifted
towards and maybe beyond the spectrum locus; they thus become rather saturated, perhaps
beyond any level that observers have viewed previously.

5 Summary

This paper has derived a surprising conclusion: what we call the chromaticity diagram
is really just a chromaticity diagram, that corresponds to a neutral state of adaptation.
Every state of adaptation has its own chromaticity diagram, which is a convex subset of
the chromaticity plane L + M + S = 1. An illuminant defines a state of adaptation via a
von Kries transform, and that state’s chromaticity diagram is the image of the standard lm
chromaticity diagram under that transform. The union of all these diagrams, over the set of
all possible illuminants, defines the total chromaticity diagram T . To a good approximation,
T is a triangle that contains the standard diagram and extends considerably beyond it. The
colours of T outside the standard diagram cannot be produced under neutral illumination.
Some have probably never been seen by most observers, and would likely appear impossibly
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saturated if they were seen. In the case of purely monochromatic illumination, the Helson-
Judd effect, which can be modeled as an extreme case of von Kries adaptation, sometimes
produces such unusually saturated colours.
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