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Abstract

Forsyth’s 1990 gamut-based illuminant estimation (GBIE) is an important colour
constancy algorithm. When a sensing device (assumed to contain three individual sen-
sors) makes an image of physical objects under a single illuminant, GBIE uses the RGB
outputs of the image to estimate the illuminant. The set of all RGB outputs in the image
is called the image gamut. The set of all RGB outputs that could result when a par-
ticular illuminant shines on an object of arbitrary local colour is called the illuminant
gamut for that illuminant. Forsyth’s algorithm uses the fact that a particular illuminant
can be a possible light source for an image only if that illuminant’s gamut contains that
image’s gamut. Implementations to date have used training sets of reflectance spectra
to approximate illuminant gamuts. A main result of the current paper is a method for
calculating illuminant gamuts exactly, rather than approximating them: geometric con-
structions prove that illuminant gamuts are zonohedra, and that they are generated by
the device’s spectrum locus vectors, which are the RGB outputs for monochromatic re-
flectance spectra. On a more negative note, the same geometric constructions also show
that some common GBIE practices are theoretically unsound. In particular, many im-
plementations assume that a linear image of an illuminant gamut is again an illuminant
gamut; also, containment tests are sometimes performed in chromaticity space rather
than RGB space. The underlying geometry contraindicates both these practices. Finally,
a new GBIE algorithm is suggested, that calculates zonohedral gamuts explicitly, avoids
contraindicated practices, and takes advantage of the geometry of colour constancy.

Keywords: Computational Colour Constancy, Illuminant Estimation,
Zonohedron, Gamut, Sensor Response, Image, GBIE

1 Introduction

Colour constancy1 is the ability to identify an object’s local colour, regardless of the lighting
conditions in which that object is viewed. Though human colour constancy is robust and
effective in everyday situations, its mechanisms are far from understood. A related problem
is computational colour constancy: can algorithms give imaging devices the same colour
constancy that humans exhibit? Colour constancy is a difficult problem mathematically
because the visual stimulus from a viewed object is the product of the light source and that
object’s reflectance spectrum. Mechanical sensors or human eyes, however, only receive the
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visual stimulus, and cannot disentangle the factors in the product, at least for any particular
stimulus.

Though disentanglement is impossible for any individual stimulus, it might still be pos-
sible when given the set of stimuli corresponding to a scene as a whole. In 1990, Forsyth2

introduced gamut-based illuminant estimation (GBIE) to implement this approach. Illumi-
nant estimation (IE) makes inferences about the light source under which a scene is viewed.
Since the light source is one multiplicative factor contributing to visual stimuli, information
about the light source can lead to information about the other factor, object colours, which
could produce colour constancy.

GBIE uses the fact that universe of object colours is limited. Even if a scene contained
every possible object colour, the visual stimuli making up an image of the scene, when viewed
under a single light source, would only fill a limited illuminant gamut. Furthermore, this
illuminant gamut would be different for different light sources. Forsyth’s main insight is
that an image gamut, which is the set of stimuli that appear in an image of a scene, must
be contained in the gamut of the illuminant under which that image was made. Image
gamuts can be extracted directly from image data, and illuminant gamuts can be estimated,
so containment tests provide some information about what light sources are possible. Since
1990, Forsyth’s gamut-based approach to IE has spawned, and continues to spawn, many
implementations and variations.3

This paper focuses on Forsyth’s GBIE approach in the context of a mechanical sensing
device, such as an RGB camera, that makes images of scenes of physical objects, under
a single light source. The light source itself is assumed not to appear in the image, even
as a highlight. The device is assumed to contain three independent sensors, each of which
responds linearly. The problem is to make inferences about the light source under which an
image was made, using only the image gamut (and, of course, the sensors’ properties).

The current paper’s main contribution is an explicit form for illuminant gamuts: they are
shown to be zonohedra in the device’s RGB output space. Figure 1 shows an example of a
zonohedral gamut. As the paper will explain in detail later, a zonohedron is the Minkowski
sum of a set S of n vectors vi in R3. Formally,

Z(S) =

{ n∑
i=1

αivi

∣∣∣∣0 ≤ αi ≤ 1 ∀i
}
. (1)

A zonohedral gamut starts at the origin of RGB space, which corresponds to an ideal black.
The gamut’s terminal point (the farthest point from the origin) is the sensor’s RGB response
to a perfectly diffusing white, under the illuminant for that gamut. As can be seen in the
figure, a zonohedron is centrally symmetric. A zonohedron is a polyhedron. Each edge is a
translated copy of some vi, and, under some mild conditions, each face is a parallelogram.
The vi’s in this paper are the spectrum locus vectors, which are the RGB responses to objects
with monochromatic reflectance spectra. At the origin, a zonohedron is often shaped like a
brilliant-cut diamond, with many edges converging on the vertex there. In many practical
cases, the converging edges consist exactly of the spectrum locus vectors.

The zonohedral form allows the gamut for a given illuminant to be calculated, rather than
estimated. The vertices, edges, and faces can be determined from the spectrum locus vectors,
which can themselves be found from the sensors’ response functions. In the cyclic case (to
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Figure 1: A Zonohedral Illuminant Gamut in RGB Space

be defined later), the vertex-edge-face structure can be read off from an easily constructed
table. Calculating illuminant gamuts can only improve GBIE algorithms: efforts to date have
estimated gamuts from training sets of reflectance spectra. Since training sets are limited,
the estimated gamuts are incomplete at best, and any geometric structure goes unnoticed.
The zonohedral approach eliminates both these shortcomings.

A further important insight is the relationships between different illuminant gamuts.
Figure 2 shows two gamuts, for Illuminants A and E, for the same imaging device. A
counterintuitive result is that any two gamuts (provided their illuminants have positive
power at every wavelength) fit together perfectly in some neighborhood of the origin—they
are both shaped like brilliant-cut diamonds there, whose converging edges are spectrum locus
vectors. The terminal points of the zonohedral gamuts, however, can be far apart, as the
figure shows.

The identical shapes at the origin imply some negative results. Forsyth’s original paper
expressed a transformation between two illuminant gamuts as the sum of a linear operator
and a residual error term; he and further researchers have largely ignored the error term,
treating a linear transformation of an illuminant gamut as another illuminant gamut. Com-
monly, one starts with a known canonical gamut, and looks for a linear transformation such
that the transformed canonical gamut contains a given image gamut; then one can calcu-
late the RGB’s that the object would produce under the canonical illuminant. In 1996,
Finlayson4 relied on this linear framework to restrict containment tests to two-dimensional
chromaticity sets, instead of three-dimensional RGB sets, to simplify computations.

Unfortunately, the current paper shows that the linear framework is theoretically unten-
able. The gamuts in Figure 2, and in fact all illuminant gamuts, have identical edges (which

3 c© 2016 Paul Centore



PAUL CENTORE

0

50

100

150

200

250

300

0
50

100
150

200
250

300
350

400

0

100

200

300

400

500

Green

Red

B
lu

e
Illuminant E Gamut

Illum
inant A

G
am

ut

Figure 2: Zonohedral Gamuts in RGB Space for Illuminants A and E

are all spectrum locus vectors) at the origin. To send one gamut to another gamut, a linear
transformation must therefore send the set of spectrum locus vectors to itself. Given that
those vectors typically lie on an asymmetric, irregular cone, likely only trivial transforma-
tions satisfy this condition. Selecting a transformation without regard to the locus vectors
would almost certainly not produce another illuminant gamut. An unwelcome conclusion is
that many GBIE implementations have been based on unsound premises: even if a linear
image of a canonical gamut contains the image gamut, we have not really estimated an il-
luminant. Finlayson’s chromaticity containment criterion, which is derived from the linear
framework, is similarly untenable; in fact, the geometric constructions will show that it is
vacuous, because it is always satisfied.

The geometric constructions in this paper, on the other hand, should provide a sound
foundation for further implementations. Exact illuminant gamuts, rather than approxima-
tions, can be calculated directly, for any illuminant. A new GBIE algorithm will be suggested,
that avoids linear gamut transformations, but still benefits from Finlayson’s simplification,
by handling an illuminant’s chromaticity and power level separately.

This paper is organized as follows. First, the elements of the IE problem (illuminants,
objects, and sensors) are formulated mathematically, as is the problem itself. Next, these
formulations are used in geometric constructions, such as the sensor spectrum locus, the
sensor spectrum cone, and the sensor chromaticity diagram, culminating in the zonohedral
illuminant gamut. The geometric constructions are then applied to the IE problem. Zono-
hedral calculations are recommended for illuminant gamuts, and the linear transformation
framework and chromaticity containment tests are shown to be theoretically unsound. Fi-
nally, a suggested approach is given for a new GBIE algorithm that takes advantage of the
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geometric constructions.

2 Problem Formulation
This paper deals with illuminant estimation (IE) for a mechanical sensing device, such as a
camera, which produces images of scenes consisting of physical objects. To make an image
in the first place, some illumination must fall on the scene. The objects in the scene reflect
that illumination, and the reflected light enters the sensing device, which converts it into
an image. The illuminant estimation problem is to determine the illuminant solely from
such an image. This section presents formal descriptions of the problem’s three elements:
illuminants, objects, and sensors. Later sections will use this formalism to produce geometric
constructions, and apply them to illuminant estimation.

2.1 Illuminants

Light is electromagnetic radiation in the visible spectrum, from about 400 to 700 nm. Light
can be described formally by a spectral power distribution (SPD), which is a function I(λ)
that specifies the power at each wavelength λ in the visible spectrum. The set of SPDs
can be viewed as a subset (though not a subspace) of the vector space of functions over
the interval from 400 to 700 nm. The vector space structure allows two SPDs to be added
(corresponding to physical superimposition) to produce a new SPD, and also allows an SPD
to be multiplied by a positive constant, again producing a new SPD.

While the vector space is infinite-dimensional, in practice it can be approximated ade-
quately by a 31-dimensional space of discrete functions, each of which has positive physical
power at only one wavelength, and no power at other wavelengths. Such functions are called
monochromatic. The 31 wavelengths λi are the multiples of 10 nm, between 400 and 700
nm. Formally, the ith such “basis” function is given by

Ii(λ) =

{
1(in some units), if λ = λi

0, otherwise,
(2)

and an arbitrary nowhere-zero SPD I can be written as a positive linear combination of the
Ii’s:

I(λ) =
31∑
i=1

PiIi(λ) (Pi > 0 ∀i). (3)

The qualification nowhere-zero avoids degenerate cases in which an SPD has no power at
some wavelength. Nowhere-zero SPDs might also be thought of as broadband SPDs, and
any natural SPDs are nowhere-zero. Removing the nowhere-zero restriction is possible, but
technically complicated, so it will be left in for now.

A light source is a physical object, such as a light bulb or the sun, that produces light.
In colour science, an illuminant is an idealized description of a physical light source. Figure
3 shows Illuminant A, which is intended to model incandescent lighting. An illuminant is
specified by a relative SPD, while a light source is specified by an absolute SPD. Multiplying
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Figure 3: Relative SPD for Illuminant A

a light source’s SPD by a positive factor would change the power level, but not the illuminant.
Unlike colour science, computational colour constancy sometimes (but not always) uses the
term illuminant as a synonym for light source. In this paper, the terms will be distinguished
when needed, but otherwise the meaning can be inferred from context. In the problem of
interest, the lighting for a scene will be assumed to be consistent with a single illuminant.
The light, however, can be totally or partially diffused, or have both directional and diffuse
components, etc., so the power level of the light can be different at different points of the
scene.

2.2 Objects and Scenes

A sensing device makes an image of an illuminated scene, which contains various physical
objects. The term object should be understood broadly, to include natural items such as
trees and lawns, as well as artificial surfaces such as painted canvases. Obviously, an object’s
colour affects the image that the device produces.

The objects considered in this paper have a physically invariant local colour, that depends
only on the object’s reflectance spectrum. A reflectance spectrum, S(λ), gives the percentage
of light that the object would reflect if it were illuminated solely with light of wavelength λ.
S(λ) takes on values between 0 and 100%. Figure 4 shows an example reflectance spectrum,
for chromeoxide green, an artist’s pigment.

As with SPDs, the monochromatic reflectance spectra

Si(λ) =

{
1, if λ = λi,
0, otherwise, (4)

defined at the same 31 wavelengths, form a “basis” for an arbitrary spectrum:

S(λ) =
31∑
i=1

αiSi(λ) (0 ≤ αi ≤ 1 ∀i). (5)

c© 2016 Paul Centore 6
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Figure 4: Reflectance Spectrum for Chromeoxide Green

Note that Equation (5) restricts each coefficient αi to be between 0 and 1.
The scenes considered in this paper will consist only of Lambertian objects. No highlights

or gloss effects will occur, and no light sources will be visible. While somewhat artificial,
these restrictions still define an important case that is an active area of research.

2.3 Sensors

In the problem of interest, light with SPD I(λ) reflects off an object with reflectance spectrum
S(λ), and the reflected light enters a sensor device. We shall call the reflected light a sensor
stimulus, or just a stimulus. The stimulus, C(λ), is calculated by multiplying the illuminating
light’s SPD by the reflectance spectrum, wavelength by wavelength:

C(λ) = I(λ)S(λ) (6)

=
31∑
i=1

αiPiIi(λ)Si(λ). (7)

Once the stimulus C(λ) enters the sensor device, it impinges, independently, on three
individual sensors, or receptors. Typically, one of the sensors is most sensitive to the red part
of the spectrum, another is most sensitive to the green part, and the third is most sensitive
to blue, so we speak of red, green, and blue (RGB) sensors, making up an RGB device. Each
sensor has a wavelength-dependent response function, or curve, denoted ρr(λ), ρg(λ), and
ρb(λ). Figure 5 shows a hypothetical example of three response curves for one sensor device.

On a practical level, sensor response curves, if they are not already known, can be deter-
mined by experiment. Monochromatic light of wavelength λi can be shone on a white tile,
and an image made. The entries of the RGB vector for the tile, after normalizing for the
light power and the tile’s reflectance value at λi, give the values for ρr(λi), ρg(λi), and ρb(λi).

The sensor usually converts the light that impinges on it into some form of electricity,
which is the sensor’s output. This paper will assume, as is generally the case, that each
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Figure 5: Some Example Response Curves

sensor responds linearly at each wavelength, so that its output is a constant factor times
the impinging stimulus. These constants are given by the sensor response functions, whose
outputs will be denoted R, G, and B. The linearity allows us to write

R(C) =
31∑
i=1

αiPiIi(λ)Si(λ)ρr(λi), (8)

G(C) =
31∑
i=1

αiPiIi(λ)Si(λ)ρg(λi), (9)

B(C) =
31∑
i=1

αiPiIi(λ)Si(λ)ρb(λi). (10)

Since R, G, and B are not functions of wavelength, and since the terms Pi(λ) and Si(λ) are
1 when λ = λi, and 0 otherwise, we can drop those terms, getting

R(C) =
31∑
i=1

αiPiρr(λi), (11)

G(C) =
31∑
i=1

αiPiρg(λi), (12)

B(C) =
31∑
i=1

αiPiρb(λi). (13)

The total output for all three sensors is (R,G,B), which is a vector in a three-dimensional
vector space. R, G, and B will also denote a set of axes in that vector space. The components
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of sensor output vectors are assumed to be non-negative, so only the positive octant, O, of
the vector space is needed. Since each component in (R,G,B) is a linear function of a
stimulus, the output vector as a whole is a linear transformation of the set of stimuli. In
fact, we can combine Equations (11) through (13) to get

(R,G,B)(C) =
31∑
i=1

αiPi(ρr(λi), ρg(λi), ρb(λi)). (14)

A sensing device generally produces a two-dimensional image, consisting of a rectangular
grid of pixels. Each pixel corresponds to a different direction in which the device “looks at”
the scene. An image therefore consists of a multitude of sensor output vectors, corresponding
to the points of the scene.

2.4 The Illuminant Estimation Problem

A light source, a scene consisting of objects, and a senor device with three individual sensors,
are the physical elements of the illumination estimation problem. The device as a whole
outputs a multi-pixel image of that scene under that light source. The illumination estimation
problem is to infer the light source from such an image. This problem is challenging because
the sensor stimulus for each pixel is the product of an SPD and a reflectance spectrum, and
there seems to be no way to disentangle the SPD, which contains illumination information,
from the reflectance spectrum, which contains object information.

Even though no pixel by itself provides sufficient information for IE, Forsyth2 argued
that the outputs from the set of pixels as a whole can provide sufficient information. In the
aggregate, the set of pixel outputs, as a subset of RGB space, is called the image gamut.
Another kind of gamut, called the illuminant gamut, can also be constructed. Consider the
set of all possible object colours: imagine a sort of comprehensive Color Checker—a physical
surface painted with a very large grid of flat squares, such that every reflectance spectrum
(or at least a sufficiently close approximation) occurs in one of the squares. Suppose that
the sensor device makes an image of that grid under a particular light source. Then the
resulting set of pixel outputs, which again is a subset of RGB space, is called that light
source’s illuminant gamut. When an actual scene is illuminated by that light source, the
sensor output for every pixel corresponding to an object in that scene, and therefore the
image gamut as a whole, is contained in the illuminant gamut for that source. Forsyth’s
approach is to calculate the image gamut for a particular image, and then find an illuminant
gamut that both contains the image gamut, and is a good fit for it. The light source that
produces such an illuminant gamut should be a good estimate for the actual light source.
This approach is called gamut-based illuminant estimation (GBIE).

This paper works within the GBIE framework. In the next section, the recently presented
formulations of sources, objects, and sensors will be used to construct gamuts mathematically.
The section after that will apply those constructions to GBIE implementations to date,
suggesting some improvements.
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3 Geometric Constructions

The previous section formulated the physical phenomena, sensor properties, and mathemati-
cal relationships that determine the outputs of a sensing device. The illuminant gamuts used
in GBIE were also introduced. The current section will build on the formulations, step by
step, to construct an illuminant gamut geometrically. The first step is the sensor spectrum
locus, which is the set of vectors, in RGB space, that are sensor outputs, for a particular
light source, of maximal monochromatic reflectance spectra. The second step is the sensor
spectrum cone, which is the total set of RGBs that the device can produce; this set includes
the RGB produced by any reflectance spectrum, under any light source. The third step
is the sensor chromaticity diagram, which is the set of all possible chromaticities of sensor
RGB outputs. The chromaticity of an RGB vector depends on the ratios of its R, G, and B
components, so is constant along rays in RGB space. A somewhat surprising fact is that the
chromaticity diagram and spectrum cone are both independent of illumination: they depend
only on the sensor response curves. The spectrum locus, however, depends on both response
curves and illumination.

These three steps culminate in the final construction, an illuminant gamut, which also
depends on both response curves and illumination. The chief new result of this paper is
that each illuminant gamut is a zonohedron. A zonohedron is a convex polyhedron that is
the Minkowski sum of the vectors in the spectrum locus. This result is important because
it allows illuminant gamuts to be calculated explicitly. GBIE approaches to date estimate
illuminant gamuts from a limited training set of reflectance spectra, and use no information,
except convexity, about the gamut’s form. The zonohedral approach, on the other hand,
encompasses all theoretically possible reflectance spectra, and uses the information that the
gamut is not just convex, but in fact zonohedral. The next section will apply the zonohedral
approach to GBIE implementations.

3.1 The Sensor Spectrum Locus

For a given light source I, a device’s sensor spectrum locus, denoted LI , is the set of RGB
output vectors that result from maximal monochromatic reflectance spectra, when imaged
under I. Such a spectrum reflects 100% of the light at the wavelength λj, and no light at any
other wavelength; in terms of Equation (5), αj is 1 and all other α’s are 0. From Equation
(3), the power of the light source at λj is Pj. The resulting sensor stimuli Cj for the 31
wavelengths are therefore given by

Cj = PjIj(λ), j = 1, 2, . . . 31. (15)

Evaluating the output vectors for the Cj’s with Equations (11) through (13) gives

LI =
{
Pi(ρr(λi), ρg(λi), ρb(λi))

∣∣∣i = 1, 2, . . . 31
}
. (16)

The expression Pi(ρr(λi), ρg(λi), ρb(λi)) is just theRGB output for the ith maximal monochro-
matic reflectance spectrum, and is called the ith sensor spectrum locus vector. The set of
spectrum locus vectors as a whole is called the sensor spectrum locus.

c© 2016 Paul Centore 10
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Figure 6: The Sensor Spectrum Locus for the Response Curves in Fig. 5, and Illuminant E

In RGB space, a sensor spectrum locus can be drawn as a sequence of 31 vectors that
start at the origin. Since device outputs are non-negative, the sensor spectrum locus is
restricted to the non-negative octant O of RGB space. Figure 6 shows the locus of the
sensor response curves in Fig. 5. The light source in this example is assumed to set each Pi

to 1. (Such constant-power light sources are said to be consistent with Illuminant E.)
Suppose another light source was used, whose power level at 500 nm was 2 instead of 1.

Then the 500 nm vector in Fig. 6 would be in the same direction, but twice as long. Similarly,
the vector would be half the length if the 500 nm power level were 1/2. The vectors for the
other wavelengths would also shrink or expand, depending on the power levels for the new
source—but in all cases the vectors would maintain their directions. A device’s spectrum
locus will therefore differ for different light sources, but the locus vectors’ directions are the
same for all sources.

3.2 The Sensor Spectrum Cone

A device can produce images of objects under a multitude of light sources. The totality of
RGB outputs that can be theoretically produced, for any light source, occupies the sensor
spectrum cone, which is a subset of O in RGB space. We will show that the spectrum cone
is the convex cone of the spectrum locus.

The set of all non-negative linear combinations of a set of n vectors, {vi}, in a vector
space is called a convex cone, and is formally defined as{ n∑

i=1

βivi

∣∣∣βi ≥ 0 ∀i
}
. (17)

Geometrically, a convex cone is constructed by extending each vector vi into a semi-infinite
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ray, and then taking the convex hull of all those rays. (The convex hull of a set S can be
defined to be the smallest convex set that contains S.) Equivalently, the extended vectors
define a roughly conical surface in O that radiates outward from the origin, and the convex
cone consists of all vectors “inside” that surface. Every vector inside the cone can be extended
to a ray, which is also inside the cone, so a convex cone equals the union of all the rays it
contains.

Now suppose that the vi’s are taken to be the locus vectors LI for the light source I,
with coefficients Pi. Then the convex cone of LI is given by

CI =

{ 31∑
i=1

βiPi(ρr(λi), ρg(λi), ρb(λi))
∣∣∣βi ≥ 0 ∀i

}
. (18)

βi and Pi are both non-negative, so their product is non-negative. Thus any coefficient Pi

could be absorbed into the single coefficient βi, to produce

CI =

{ 31∑
i=1

βi(ρr(λi), ρg(λi), ρb(λi))
∣∣∣βi ≥ 0 ∀i

}
. (19)

This argument would apply to any light source. Assume for instance that there is a sec-
ond light source I2, with coefficients Pi2. Then the expression for CI2 would be identical to
Equation (18), except that Pi would be replaced by Pi2. After absorbing each Pi2 into βi,
we see that the expression for CI2 is identical to the expression for CI in Equation (19).
An important conclusion is that the sensor spectrum cone, which is the convex cone of the
locus vectors, is the same, no matter which light source is used for the locus. The convex
cone, then, depends only on the sensor response curves. Thus we will drop the subscript in
Equation (19) and just denote the sensor spectrum cone by C.

We will now show that C consists exactly of the RGB sensor outputs for any local colour,
under any illumination. A local colour is defined by its reflectance spectrum, S(λ), as given
in Equation (5). A light source, I, is defined by its SPD, I(λ),as given in Equation (3).
Equation (14) gives the entries of the RGB output. The terms αi and Pi are both non-
negative, so they can be combined into one non-negative βi. This adjustment makes it clear
that the RGB output vector is of the form given in Equation (19), so the RGB vector is in
the sensor spectrum cone. Conversely, given a cone vector of the form in Equation (19), one
could let αi = 1, and Pi = βi (as long as βi is not 0; if βi is 0, then let αi = 0, and Pi = 1,
to avoid zero power at the ith wavelength). These new coefficients could be used to define
a reflectance spectrum and light source whose RGB output is the initial cone vector. Thus
every cone vector is contained in the set of RGB sensor outputs. The two-way containment
proves that C consists exactly of all possible RGB sensor outputs, as was to be shown.

The spectrum cone can be visualized by cutting it with a plane. Figure 7 shows the
spectrum locus vectors from Figure 6, extended to rays. These rays, and any rays inside of
them, make up the spectrum cone. In the figure, the rays have been truncated at the plane
R+G+B = 1, to show the cone’s profile, which is the convex hull of the rays’ intersections
with R + G + B = 1. Since the spectrum locus vectors are all non-negative, the sensor
spectrum cone really is a geometrical cone, though not a circular one; while its profile is
convex, it is also likely irregular.
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Figure 7: Profile of the Spectrum Cone

3.3 The Sensor Chromaticity Diagram

The dichotomy between locus vector direction and extent suggests that we can decompose
a three-dimensional locus vector into a magnitude (which requires one dimension) and a
direction (which requires two dimensions). The two-dimensional direction will be called
chromaticity. The set of chromaticities can be displayed conveniently in a sensor chromaticity
diagram, whose construction will now be given.

Chromaticities have an important physical interpretation, in terms of shadows. Even
though an object in a scene has a single local colour, the sensor outputs for different points
on that object will likely differ, because some parts of the object are in light, and other
parts are in various degrees of shadow. The set of all sensor outputs for that local colour, in
all degrees of shadow and light, is called a shadow series. The sensor stimuli for a shadow
series share a common shape, or relative SPD, which is multiplied by larger factors when
the object is in light, and by progressively smaller factors as the object is more deeply in
shadow.5 Chromaticity depends only on the relative SPD, so a shadow series has constant
chromaticity.

The sensor stimuli of a shadow series impinge on the sensors, producing a set of RGB
output vectors. Since the sensors are linear, the RGB vectors all fall along a single ray,
called a chromaticity ray, through the origin. In fact, it is not hard to see that the sensor
spectrum cone consists exactly of the chromaticity rays. Although the device reduces the
series from a 31-dimensional SPD to a 3-dimensional RGB, the series’ common relative SPD
causes the R, G, and B entries of each vector on the chromaticity ray to have common ratios.
These ratios can be completely described by two chromaticity coordinates, that will be used
to construct the sensor chromaticity diagram.

As before, extend each spectrum locus vector in Figure 6 to a ray, and normalize those
rays by cutting them with the plane R + G + B = 1, as shown in Figure 8. The plane
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Figure 8: Normalized Spectrum Locus Vectors, that Intersect the Plane R +G+B = 1

R+G+B = 1 intersects O in the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). The
vertex (1, 0, 0) would correspond to a sensor stimulus (if any existed) that produced a pure
R output, without any G or B output; the other two vertices have similar interpretations.

We can specify the ray for an output vector (R,G,B) by its intersection point, (r, g, b),
with the plane R +G+B = 1 :

(r, g, b) =
1

R +G+B
(R,G,B). (20)

The point (r, g, b) is on the ray and r + g + b = 1. Since b can always be calculated by
b = 1− r − g, the first two coefficients, r and g, are sufficient as chromaticity coordinates.

Figure 9 shows the triangle in Figure 8, with chromaticity coordinates. Only one point of
each ray remains. Each monochromatic stimulus, via its spectrum locus vector, is located in
the triangle, as labeled. The vertices correspond to pure red, green, and blue chromaticities;
these are mathematical ideals that are likely not producible physically. The chromaticity
diagram, shown in grey in the figure, is the convex hull of the points corresponding to the
locus vectors. Apart from its smallest-convex-set definition, the convex hull of a set of n
vectors {vi} can also be defined by

co({vi}) =

{ n∑
i=1

αivi

∣∣∣∣0 ≤ αi ≤ 1 ∀i,
n∑

i=1

αi = 1

}
. (21)

Choose a point v in the grey chromaticity diagram. Since each black point vi in Figure
9 corresponds to a monochromatic reflectance spectrum Si, and since each point in the grey
chromaticity diagram can be written as

∑
αivi for some set of αi’s, all less than 1, it follows

that v will occur as the chromaticity of an object with reflectance spectrum
∑
αiSi. Therefore

the chromaticity diagram gives the entire set of chromaticities that can be produced.
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Figure 9: Chromaticity Diagram

Like the spectrum cone, but unlike the spectrum locus, the chromaticity diagram for a
sensing device does not depend on the illuminant—instead, it depends only on the sensor
response curves. Mathematically, this result follows from the fact that no particular power
level is needed to define a ray, so the coefficients Pi in Equation (16), provided they are all
nowhere zero, are not required when defining a chromaticity diagram.

A more surprising consequence is that any nowhere-zero illuminant, if it reflects off the
right reflectance spectrum, can produce any chromaticity in the device’s chromaticity dia-
gram. If some Pi’s are very small, then the output for some chromaticities might be very
dark, but nevertheless all chromaticities will be present. Furthermore, increasing the light
source’s power level, without changing the source’s relative SPD, could make those dark
chromaticities arbitrarily bright. Increasing the power level slides RGB outputs away from
the origin, along the chromaticity rays, but does not change the fact that the spectrum cone
consists precisely of all chromaticity rays, and the same set of rays occurs for all nowhere-zero
illuminants.

In Figure 9, the intersection points are said to be cyclic, because they form a sequence
around the boundary of their convex hull. In the terms of West and Brill,6 a cyclic set
is “convex and well ordered in wavelength.” Algebraically, no point is a positive linear
combination of any subset of the other points. Geometrically, no point is in the convex hull
of the other paints. Cyclic locus vectors simplify some further constructions and calculations.
In practice, the spectrum loci of many sensing devices are cyclic, simply because the device’s
sensor responses mimic human photoreceptor responses, which are known to be cyclic.6

3.4 Minkowski Sums and Zonohedra

After introducing the concepts of Minkowski sums and zonohedra, the previous constructions
will be used to construct zonohedral illuminant gamuts in RGB space. Some previous colour
science papers7,8 can be consulted for further details.

The Minkowski sum (also called the vector sum9) of two sets, A and B, in Rn, is defined

15 c© 2016 Paul Centore



PAUL CENTORE

as

A⊕B = {a+ b|a ∈ A, b ∈ B}. (22)

The addition on the right side of Equation (22) is ordinary vector addition in Rn. Minkowski
addition is commutative: A⊕B is the same as B⊕A. It is also associative: (A⊕B)⊕C
is the same as A ⊕ (B ⊕ C). Thus we can unambiguously write A ⊕ B ⊕ C, allowing the
Minkowski sum to be defined for an arbitrary number of sets.

Geometrically, the Minkowski sum of A and B is the shape covered by all the copies
of A, whose centers touch B at at least one point. In fact, one could visualize A ⊕ B as
the set of points that is covered whenever a copy of A is added to every point in B. By
commutativity, the same new set would result by adding a copy of B to every point in A.

Zonohedra result from a special case of Minkowski summation, when the summands are
all line segments starting at the origin. Such a line segment can be equally well represented
by a vector whose tail is the origin and whose head is the farthest point of the line segment.
Suppose that we have a set of n non-negative vectors, {vi}, in R3. Then the zonohedron
generated by {vi} is the Minkowski sum of the line segments corresponding to those vectors:

Z({vi}) = v1 ⊕ v2 ⊕ ...⊕ vn. (23)

Equivalently,

Z({vi}) =

{ n∑
i=1

αivi

∣∣∣∣0 ≤ αi ≤ 1 ∀i
}
. (24)

The vectors vi are referred to as generating vectors, or simply generators.
Zonohedra offer considerable geometric structure. A zonohedron is always a convex poly-

hedron. Furthermore, each edge of that polyhedron is a translated copy of some generator,
and, if no three generators are coplanar, then every face is a parallelogram. Every vertex of
a zonohedron can be represented as a sum of generators, and this representation is unique.
Algebraically, vertices occur only (but not always) when every αi in Equation (24) is either
0 or 1. A zonohedron has a vertex at the origin, when every αi is 0, and its terminal vertex
occurs when every αi in Equation (24) is 1; the terminal vertex is simply the sum of all the
generators. A zonohedron is convex, and centrally symmetric about the point

n∑
i=1

1

2
vi. (25)

The problem of determining a zonohedron’s vertices, edges, and face, when given only
its generators, is referred to as solving the zonohedron. Ref. 10 suggests some algorithms for
the general case. When the generators are cyclic, however, pp. 113-115 of Ref. 7 describes a
simple algorithm involving an easily constructed table.

3.5 The Zonohedral Illuminant Gamut

The previous constructions and definitions, combined with the assumed linearity of the
sensing device, have laid the groundwork for this paper’s main result: an illuminant gamut
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is a zonohedron in RGB space. More particularly, this section will show that an illuminant
gamut is the Minkowski sum of the sensor spectrum locus vectors.

For a sensing device and light source I, the illuminant gamut consists of all the RGB
vectors that could occur in an image of any object, when illuminated by I. An object’s colour
is defined by a reflectance spectrum with 31 coefficients αi, all between 0 and 1 (see Equation
(5)). Illumination by I, with power coefficients Pi, produces the sensor stimulus C, given by
Equation (7). Equation (14) gives the RGB output for C:

(R,G,B)(C) =
31∑
i=1

αi [Pi(ρr(λi), ρg(λi), ρb(λi))] . (26)

As the αi’s vary over all allowable combinations, producing all possible reflectance spectra,
Equation (26) will produce all RGB’s in the illuminant gamut.

The form of Equation (26) shows that it can be interpreted as a zonohedron. Write

vi = Pi(ρr(λi), ρg(λi), ρb(λi)). (27)

Then vi is the ith spectrum locus vector. Furthermore, all the αi’s must be between 0 and 1,
but are otherwise arbitrary. The total output vector for C, on the left side of Equation (27),
is therefore in the zonohedron generated by the vi’s. Since each αi is arbitrary, the converse
follows: each vector in the zonohedron results from an object colour. Formally, let

ZI =

{ m∑
i=1

αi [Pi(ρr(λi), ρg(λi), ρb(λi))]

∣∣∣∣0 ≤ αi ≤ 1 ∀i
}
. (28)

Then ZI is the illuminant gamut for the light source I, and is the zonohedron generated by
the spectrum locus vectors for I (the set LI), as was to be shown. As an example, Figure
1 shows the zonohedral illuminant gamut for the response curves in Figure 5, when I has
constant power 1 at each wavelength (such an SPD is an instance of Illuminant E).

A zonohedron’s terminal point is the sum of all its generating vectors. An illuminant
gamut’s generating vectors consist of that illuminant’s spectrum locus vectors, each of which
corresponds to a reflectance spectrum with 100% reflectance at exactly one wavelength. The
terminal point therefore corresponds to the spectrum with 100% reflectance at all wave-
lengths, which is an ideal white. The origin occurs when every αi is zero, so it corresponds
to an ideal black. By convexity and linearity, the line joining the origin to the terminal point
contains all the ideal greys, that is, object colours which reflect the same percentage of light
at each wavelength.

While knowing the terminal point for a particular illuminant is helpful, surprisingly that
knowledge does not define the illuminant, because the loci of two different illuminants can
sum up to the same terminal point, even though the individual locus vectors have different
lengths. One could therefore visualize a set of zonohedra, all fixed at the origin, all having the
same terminal point, and all containing the same grey axis, but having different polyhedral
shapes. The variability in shape depends of course on the sensors’ response functions.

As discussed earlier, SPDs can be seen as varying independently in chromaticity and
power level. Multiplying a light source by a positive constant k will dilate (if k > 1) or
contract (if k < 1) its zonohedral gamut. If the power is doubled, for example, each vector
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Figure 10: The Structure of a Zonohedral Illuminant Gamut at the Origin of RGB Space

in the zonohedron will double in length, but without any change in direction. The origin will
remain unchanged, but the grey axis will stretch to twice its length, moving the terminal
point twice as far from the origin. These considerations of power level versus chromaticity
will be relevant later, for a proposed GBIE algorithm.

An important—and very counterintuitive—result is that a zonohedral gamut, for any
non-zero illuminant, fits perfectly into the spectrum cone at the origin.8 Figure 10 shows
that a brilliant-cut diamond, in which many edges converge at a sharp point, has the same
structure as a zonohedral gamut at the origin, where the spectrum locus vectors converge.
The surface of the spectrum cone is constructed by extending the locus vectors to rays,
so a zonohedral gamut must fit perfectly inside the spectrum cone. The spectrum cone is
unique, and depends only on the sensor responses, not on the illuminant, so every zonohedral
illuminant gamut (at least for a nowhere-zero illuminant) fits perfectly inside the cone.

A corollary is that any two (nowhere-zero) illuminant gamuts must fit perfectly inside
each other, and thus have the same shape and location, in some small neighborhood of the
origin. Figure 2 shows two such gamuts, for Illuminants A and E, both using the sensor
responses in Figure 5. The spectrum locus vectors for the two illuminants all have the same
orientation, but can differ in length. Away from the origin, the length differences give the
illuminant gamuts different shapes, and can significantly separate their terminal points, as
seen in the figure. At the origin, however, their shapes must be identical. In the next section,
the common shape at the origin will imply that one illuminant gamut is almost never a linear
transformation of another illuminant gamut, as many GBIE algorithms assume.

4 Applications to Illuminant Estimation

A GBIE algorithm starts with an image of a scene, and uses illuminant gamuts to make
inferences about the illumination for that scene. The previous section’s geometric construc-
tions suggest some improvements to current algorithms, and also show that some common
techniques are theoretically unsound. The main positive improvement is the use of zono-
hedral gamuts, which produces a complete illuminant gamut by direct calculation; current
methods involve training sets, and do not fill out the complete gamut.

There are also two negative results. First, linear transformations are often used to trans-
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fer the RGB’s in a canonical gamut to the RGB’s in some other illuminant gamut; we
will show a linear image of one illuminant gamut is almost never another illuminant gamut.
Second, Finlayson recommends recasting gamut containment problems as chromaticity con-
tainment problems4,11,12 Since the chromaticity diagram depends only on sensor response,
and not on illumination, however, chromaticity containment tests cannot distinguish between
illuminants.

To take advantage of the underlying geometry, and to avoid techniques contraindicated
by that geometry, a new GBIE algorithm is suggested. The new algorithm uses zonohedral
gamuts, decomposes illumination into chromaticity and power level, and finds the illumina-
tion of minimum power that contains the image gamut.

4.1 Constructing Zonohedral Illuminant Gamuts

Many implementations of Forsyth’s GBIE algorithm require constructing the illuminant
gamut for one or more known illuminants. Previous constructions have relied on training
sets of object colours, taken from, for instance, Munsell atlases or spectral databases.12

Typically, the convex hull of the RGB’s of the training set is taken as the illuminant gamut.
Since physical examples of near-optimal reflectance spectra, especially dark ones, are rare,
however, the resulting illuminant gamut is not complete. In addition, the training set method
provides no geometric insight about the gamut.

This paper suggests zonohedral construction instead, which automatically incorporates
all theoretically possible reflectance spectra. The comprehensiveness insures that the zono-
hedral gamut is complete, containing even colours that are very dark, light, or saturated.
In addition, the gamut’s polyhedral structure, with explicit vertices, edges, and faces, can
be calculated directly, and provides some geometric intuition for further use. These two
advantages recommend zonohedral construction methods over training set methods.

4.2 Linear Feasible Mappings

Forsyth’s original GBIE algorithm2 used the canonical gamut Gcan, for a known illuminant
Ican, and the image gamut Gim, which was the convex hull of all the RGB’s in an image.
Likely Gcan did not contain Gim, so Ican was not the illuminant used for the image. The
problem then is to find an illuminant gamut GI , such that

GI ⊃ Gim. (29)

Forsyth did not require that the illuminant I itself be found, as long as the RGB’s that
would have occurred under the canonical illuminant could be calculated. Therefore, his
algorithm only looked for a non-canonical gamut GI that satisfied Equation (29), rather
than an explicit I.

The original implementation estimated non-canonical illuminant gamuts from the canon-
ical gamut. After some analysis, the relationship between GI and Gcan was written as a
linear operator M, plus a residual error term (Equation (3) in the 1990 paper). Dropping
the residual term left just M for the transformation:

GI = M(Gcan). (30)
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Conversely, if M satisfied certain conditions, such as being full-rank and preserving the pos-
itive octant, then M(Gcan) would be the gamut for some illuminant. Later implementations
often used the much simpler condition, based on von Kries’s coefficient rule,1 thatM was di-
agonal with positive entries. Any M such that M(Gcan) ⊃ Gim is called a feasible mapping.
Many implementations of Forsyth’s algorithm find a set of feasible mappings, and then use
a minimizing criterion to select one that gives the best estimate of GI .

Unfortunately, our geometric constructions show that linear feasible mappings such as
M are theoretically untenable. Section 3.5 shows that the canonical gamut is a zonohedron,
Zcan, that fits perfectly into the spectrum cone, C, at the origin. Since linear operators
such as M preserve convexity relationships, M(Zcan) is another zonohedron, and M(C) is
another convex cone. Furthermore, M(Zcan) fits perfectly inside M(C) at the origin. To be
an illuminant gamut, though,M(Zcan) must fit perfectly inside C at the origin, which is only
possible if C and M(C) are the same set. Since a spectrum cone’s profile is usually irregular,
however, it is very unlikely that the image under a linear M of an illuminant gamut is again
an illuminant gamut.

As a consequence, the linear method of estimating further illuminant gamuts produces
actual illuminant gamuts only by accident. In implementations, a null set of feasible map-
pings is a likely result. Finlayson et al. (p. 8 of Ref. 12) prevent such null sets by not
using linear transformations at all: their Gamut Constrained Illuminant Estimation (GCIE)
algorithm estimates new illuminant gamuts directly from a training set. In general, the
underlying geometry contraindicates looking for linear feasible mappings; direct illuminant
gamut calculations are preferable, especially when zonohedral calculations are used in place
of training sets.

4.3 Chromaticity Containment Tests

Forsyth’s 1990 GBIE algorithm works in three-dimensional RGB space, checking whether
an image gamut is contained in various illuminant gamuts. In 1996, Finlayson4 suggested a
containment check in two-dimensional chromaticity space: replace the set of all RGBs that
an illuminant I can produce with the set of all chromaticites, Chrom(I), that I can produce;
similarly, use the image’s chromaticities, rather than its RGB outputs. Then I is a possible
illuminant only if the image’s chromaticities are a subset of Chrom(I).

Like linear feasible mappings, unfortunately, the chromaticity approach is also theoret-
ically untenable. Sect. 3.3 shows that any nowhere-zero illuminant can produce any chro-
maticity in the device’s chromaticity diagram. Formally, given two nowhere-zero illuminants,
I1 and I2, we always have Chrom(I1) = Chrom(I2)—and both of them equal the chromaticity
diagram, which only depends on the sensors’ response functions. As a consequence, chro-
maticity containment tests are vacuous, because they are always satisfied. Mathematically,
Sect. III of Ref. 11 derived chromaticity criteria from linear feasible mappings—which we
have also seen to be untenable. Likely, the incomplete gamuts resulting from limited train-
ing sets obscured the fact that different illuminants produce the same chromaticiites. The
geometrical constructions, however, make it clear.

In fact, we can see geometrically that any nowhere-zero illuminant can produce any RGB
in the spectrum cone. Suppose we have a light source I, with zonohedral gamut GI , and a
pixel in a scene has an output vector (R,G,B), that is not contained in GI . Then it would
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seem that I is not the illuminant for that scene—but that conclusion fails to distinguish an
illuminant (in the sense of a relative SPD), from a power level. Since GI fits perfectly inside
the spectrum cone at the origin, the chromaticity ray through (R,G,B) must intersect GI .
If we multiply I by a sufficiently large positive factor k, however, then GkI would contain
(R,G,B). Geometrically, multiplication by k dilates the zonohedral gamut, changing its size
but not its shape. I and kI have the same relative SPD, but different power levels. A
powerful enough light source, then, of any nowhere-zero relative SPD, can produce any pixel
output that is possible for a particular sensor device. The new GBIE algorithm suggested
in the next section explicitly accounts for this fact.

4.4 A New GBIE Algorithm

The last two sections have been rather negative, arguing that Forsyth’s illuminant gamut
algorithm is not actually working with illuminant gamuts, and that Finlayson’s chromaticity
containment criterion is vacuous. This section takes a more positive approach, by suggesting
a new GBIE algorithm that takes advantage of this paper’s geometric constructions.

A light source can be decomposed into a power level and a relative SPD. The relative
SPD has a well-defined chromaticity in the sensor’s chromaticity diagram. The new algorithm
takes as input the set P of all pixel RGB’s in an image, and estimates the chromaticity and
power level of the light source under which the image was taken.

Suppose we hypothesize a certain chromaticity, (r, g), and a certain power level. Then
there is a set of metameric light sources of that power and chromaticity. Choose one I from
this set, and find its zonohedral gamut ZI . If ZI does not contain P , then multiply the power
level of I by the smallest positive factor k > 1 such that ZkI does contain P . If, on the other
hand, ZI already contains P , then multiply by the smallest positive factor k < 1 such that
ZkI still contains P . The result either way is the minimum power needed for a light source
of chromaticity (r, g) to produce that image. Define the function

f : chromaticity diagram −→ R, (31)

which assigns the minimum power to any set of chromaticity coordinates. Now minimize
f. That is, find chromaticity coordinates (rmin, gmin) such that f(rmin, gmin) is as small as
possible. Take (rmin, gmin) to be the chromaticity we are seeking, and f(rmin, gmin) to be
the power level.

Geometrically, f shrinks or expands zonohedral gamuts, without changing their shapes,
until they are just large enough to contain P , but no larger. Physically, f finds the minimum
power needed for a light source of a particular chromaticity to produce all the colours seen
in the image. Perceptually, f implements an heuristic: a scene’s illumination level is the
minimum needed to make the scene appear as it does.

While many details are still to be resolved, this description should be a helpful starting
point for a new GBIE algorithm that explicitly incorporates zonohedral gamuts and the
relevant geometric constructions. Other researchers are encouraged to develop it further.
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5 Summary
This paper has rigorously analyzed the geometric setting of Forsyth’s 1990 GBIE algorithm.
A series of constructions (spectrum locus, spectrum cone, chromaticity diagram) has been
presented, culminating in zonohedral illuminant gamuts. The geometric results have sug-
gested improvements to algorithm implementations. The major positive improvement is a
zonohedral method for calculating illuminant gamuts directly, rather than estimating them
from training sets. Two negative improvements have been recommendations against treating
the relationship between two illuminant gamuts as linear, and against using chromaticity
containment tests as a replacement for RGB containment tests. A new GBIE algorithm has
been suggested that avoids both these practices, uses zonohedral gamuts, and draws on the
three-dimensional geometrical setting. While much further work remains, it is hoped that
the geometric entities presented here will provide a firm foundation for further progress.
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