
The
Geometry

of
Colour

Paul Centore





The
Geometry

of
Colour

Paul Centore



Suggested Cataloging Data
Centore, Paul

The Geometry of Colour/P. Centore
221 p., 21.6 by 14.0 cm
ISBN 978-0-9990291-0-7
1. Color 2. Color—Mathematics 3. Colorimetry 4. Convex

Geometry I. Centore, Paul, 1968- II. Title
QC495.C397 2017
535.6

Coopyright c• 2017 by Paul Centore
All rights reserved
Printed in the United States of America

ISBN 978-0-9990291-0-7

0291077809999
 

ISBN 9780999029107



Introduction
Colour is a universal experience, which has been investigated since an-
tiquity. Today, colour science rests firmly on both empirical findings
and theoretical development. Unlike many technical fields, colour sci-
ence considers not only physical factors, but also human perception,
and the relationships between the two. A basic part of colour science is
colour matching, which identifies when two side-by-side lights, viewed
in isolation through an aperture, produce the same colour.

The Geometry of Colour formulates colour matching mathematically,
emphasizing geometric constructions and understanding. The motiva-
tion for writing it was the unifying insight that many apparently dis-
parate objects in colour science share a common zonohedral structure.
The book aims at both rigor and intuition. Fortunately, many colour
science objects can be explicitly constructed in a three-dimensional
vector space, and, while linear algebra insures rigorous definitions,
a premium is placed on a concrete visual and spatial presentation—
ideally, a motivated reader could build literal models, for example with
foam board and glue.

This book is intended for mathematicians, colour scientists, and,
as much as possible, curious non-specialists. Familiarity with basic
linear algebra is assumed, although anybody who understands ordi-
nary vector operations, and is comfortable thinking visually, could fol-
low most of the book. Mathematicians with no preconceptions about
colour will likely follow the derivations easily, but find some colour
concepts, which arise from empirical considerations, puzzling and un-
motivated. Though indispensable, colour-matching experiments are
artificial, and their relationship to everyday colour appearance is still
unclear. Readers looking to understand colour in realistic situations
will likely be dissatisfied: this book will not do much to distinguish red
from blue, nor dull colours from bright ones. Unlike mathematicians,
colour scientists already understand the place of colour matching in
colour science, but will probably find familiar concepts expressed in
terms that are unfamiliar, and perhaps o�-putting. The mathemati-
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Introduction

cal excursions, however, eventually pay large dividends, by identifying
a common structure in seemingly unrelated colour science concepts:
object-colour solids, illuminant gamuts, and electronic displays are all
shown to be zonohedra.

The Geometry of Colour is organized as follows. The first two chap-
ters present only mathematics, and no colour science. The first chapter
presents convexity in a vector space setting, with no metric assump-
tions; the tools of linear functionals and hyperplanes are introduced.
The second chapter discusses Minkowski sums and zonohedra. The
Minkowski sum “adds” sets in a vector space geometrically, by sweep-
ing one set over the other. A zonohedron is a special Minkowski sum,
in which all the summands, or generators, are vectors in R3. Zono-
hedra are convex, rotationally symmetric, polytopes whose faces are
generically parallelograms.

The third chapter discusses the physics needed for colour science:
humans perceive a light stimulus as having a colour, so a vector space
of light stimuli is constructed. Also, light often reflects o� coloured
surfaces before entering the human eye, so a vector space of reflectance
functions is constructed. The fourth chapter introduces human colour-
matching behavior, as codified in the CIE 1931 Standard Observer,
which defined a linear transformation from physical light stimuli to
the three-dimensional space of perceived colours. The set of phys-
ical stimuli has a high dimension, so often multiple stimuli, called
metamers, produce the same colour perception.

The fifth chapter applies the convexity and zonohedra of the first
two chapters to the Standard Observer. Zonohedral object-colour solids

are constructed, consisting of those colours in colour space that result
when a given light source reflects o� a physical object. Such a zono-
hedron’s generators are the spectrum locus vectors, which correspond
to the colour perceptions that would result from objects which reflect
light at only one wavelength. The convex cone of the locus vectors is
called the spectrum cone, and a two-dimensional section of this cone,
after a coordinate transformation, is the ubiquitous chromaticity dia-

gram. Each object-colour solid fits perfectly into the spectrum cone at
the origin. The colours on the boundary of an object-colour solid are
called optimal colours, and the Optimal Colour Theorem, states that
they have a special form, originally given by Erwin Schrödinger. The
zonohedral development is used to prove this theorem, and further
results about metamerism.

The sixth chapter of the book applies the zonohedral approach to
computational colour constancy, which arises when working with cam-
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eras. Cameras are usually designed to mimic the human eye, so many
constructions for human vision have camera analogues. The analogues
of human object-colour solids are called illuminant gamuts, and are
also zonohedra. The chapter constructs illuminant gamuts and related
camera objects, via the Minkowski sum, and discusses their relevance
in some camera applications. The seventh chapter deals with elec-
tronic displays, showing that a display gamut, which is the set of all
the colours a display can produce, is a zonohedron, and that a dissec-
tion of this gamut into parallelepipeds can be used for some practical
applications.

This book developed over several years, and was originally moti-
vated by a search for an intuitive, visual derivation of the Schrödinger
form for optimal colours. Surprisingly, the resulting zonohedral form
also led to results in electronic displays, and then in computational
colour constancy. After further applications and development, the
mass of results, and the diverse topics in colour science that they con-
nected, warranted a book.

In mathematics, questions of originality are sometimes di�cult, not
to mention delicate. Often multiple independent investigators glimpse
or vaguely intuit an important idea, without fully articulating it. The
zonohedral approach to colour science likely follows this rule. While
I conceived and developed it on my own, probably other researchers
had similar insights previously, so I hesitate to claim much originality.
In any event, this book contributes to the literature by developing the
zonohedral approach explicitly, in a unified treatment.

And lastly, one regret. As a graduate student at the University of
Toronto, I attended the weekly geometry seminars. Though long re-
tired, the eminent Professor H. S. M. Coxeter regularly attended, and
delivered quite a few talks himself. At that time I had no inkling of
the geometry hidden in colour, but was inspired by Professor Coxeter’s
surprising ability to turn concrete observations into sophisticated ab-
stract mathematics. Professor Coxeter passed away ten years ago, so
I regret that I can’t present this book’s results to him. He liked sur-
prising applications, and he liked zonohedra—and colour science is a
surprising application of zonohedra.

—–Paul Centore
Gales Ferry, Connecticut
June 4, 2017
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Chapter 1

Convexity in Vector
Spaces

1.1 Introduction

This book elucidates some geometric structures that arise from colour
science. In particular, we will focus on colour-matching experiments,
in which two visual stimuli, though they are very di�erent physically,
produce the same colour. Both the set of visual colour stimuli and
the set of colour perceptions can be formulated as convex subsets of
vector spaces, and the relationships between them can be formulated as
linear transformations involving those subsets and vector spaces. This
chapter and the next provide mathematical tools for understanding
and working with convex sets in a vector space setting.

A basic understanding of linear algebra, at about the level of a
second-year university course, will be assumed. Concepts such as
linear dependence/independence, bases, and subspaces will be used
freely, without explanation. As much as possible, however, the pre-
sentation will emphasize the visual and spatial aspects, so much of it
can be followed by any reader who is familiar with basic vector oper-
ations (addition and scalar multiplication). Fortunately, colour space
is three-dimensional, so helpful pictures can be drawn of many of the
objects of interest, which should further aid understanding.

The basic object of linear algebra is a finite-dimensional vector
space over the real numbers, which we will denote Rn, where n in-
dicates the dimension of the space. R2 and R3 can be visualized as

1



Chapter 1. Convexity in Vector Spaces

a flat plane and space, respectively. A vector is often pictured as an
arrow that extends from the origin of a vector space to some point
in that space; we could just as well interpret a vector as the point
at the head of that arrow, so the terms point and vector will be used
interchangeably.

Convexity is an important concept, which can be defined naturally
in a vector space. A subset of a vector space is convex if that subset
contains the line segment between any pair of points in that subset.
Convex sets have many convenient properties, such as a well-defined
dimension. Bounded convex sets have topologically simple bound-
aries, and can be approximated arbitrarily well by polytopes, which
are multi-dimensional versions of polygons and polyhedra. Further-
more, many bounded convex sets of interest can be generated by a
finite set of points, called vertices. Even some unbounded convex sets,
such as convex cones, can be finitely generated (by a set of rays rather
than points). The most important property for us is that convex sets,
and much of their internal structure, are preserved under linear trans-
formations. As a result, a convex set can be transferred from one
vector space to another, and still remain convex; likely it will undergo
some structural adjustments, which will provide important informa-
tion about the transformation.

Convexity is a well-developed area of mathematics, with a long his-
tory and a wide variety of important results. This chapter’s treatment
of convexity is far from comprehensive, presenting only the material
needed to study the geometry of colour matches. Many results are
stated without proof. For a more comprehensive treatment, that is
both rigorous and readable, and that proves all the statements made
in this chapter, consult Steven Lay’s Convex Sets and Their Applications.

This chapter is organized as follows. First we discuss linear func-
tionals, and describe how they divide a vector space into a set of
parallel hyperplanes; hyperplanes are useful because they can sepa-
rate convex sets and act as bounds for them. Next, we define and
describe convex sets in vector spaces, and show how any convex set
can be generated by a minimal (and often finite) set of points. Then
we deal with two special kinds of convex sets, called convex cones and
polytopes, and show how hyperplanes can be used to delimit them.
These concepts are used in the next chapter, which presents a further
special kind of convex set, called a zonohedron. Next, a linear trans-
formation between two vector spaces is shown to preserve convexity,
and much of the internal structure of cones and polytopes. These facts
become important later in the book, when the set of human colour per-
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1.2. Functionals and Hyperplanes

ceptions is shown to be a subset of a three-dimensional vector space,
and individual colours are the images, under a linear transformation,
of functions over the visible electromagnetic spectrum. Finally, a
warning is given against implicitly attributing Euclidean ideas such as
distance and angle to the vector spaces defined in this book: somewhat
counterintuitively, combinatorial and linear relationships are su�cient
to investigate colour matching mathematically.

1.2 Functionals and Hyperplanes
Given two vector spaces, V and W, of any dimension, a special kind of
function, called a linear transformation, can be defined between them.
Formally L : V æ W is a linear transformation if and only if

L(–v1) = –L(v1), and (1.1)
L(v1 + v2) = L(v1) + L(v2), (1.2)

for any two vectors v1 and v2 in V, and any real number –. When V

and W are the same vector space, so L goes from V to itself, L is also
referred to as a linear operator. When W is the real line R1, L is also
referred to as a linear functional, or just a functional. This section will
describe how a linear functional subdivides a vector space into a set
of parallel hyperplanes.

A hyperplane H, sometimes also called an a�ne hyperplane, in a
vector space V of dimension n, is a translation, by an arbitrary vector,
of a subspace of dimension n ≠ 1. Every subspace Sn≠1 of dimension
n ≠ 1 contains the origin of V, and divides the vector space into two
regions, or half-spaces, one on either side of Sn≠1. Some simple examples
are a line through the origin in R2, and a plane through the origin in
R3. That subspace can be translated by a vector v, simply by adding
v to every vector in Sn≠1. The result (unless v is already in Sn≠1) is
that the subspace is shifted so that it no longer contains the origin.
The shifted subspace is a hyperplane that is parallel to the original
subspace. Some simple examples of hyperplanes are the line x + y = 1
in R2, and the plane x+ y + z = 1 in R3. Every hyperplane H, whether
it contains the origin or not, divides V into two regions, one on either
side of H. This division can be used to separate two disjoint convex
sets, or to separate one convex set from some region of the vector
space; such separations are not always possible with non-convex sets.

Hyperplanes are intimately connected with linear functionals. Sup-
pose we have a (non-zero) linear functional F , from V to R, and a real

3



Chapter 1. Convexity in Vector Spaces

number –. Then the set of vectors in V which are mapped by F to – is
called the pre-image of –, and denoted F

≠1(–). Since V has dimension
n and R has dimension 1, the kernel of F , denoted ker F , is a subspace
of dimension n ≠ 1. A basic result of linear algebra is that

F

≠1(–) = ker F + v, (1.3)

where v is any vector such that F (v) = –. Since ker F is a subspace of
dimension n ≠ 1, it follows that F

≠1(–) is a hyperplane.
The above argument applies to any real numbers – and —, so

F

≠1(–) and F

≠1(—) are both hyperplanes of the form given in Equation
(1.3). It follows from this form that all the hyperplanes corresponding
to pre-images under F are parallel. Since F is defined for every vec-
tor in V, the hyperplanes foliate V : each vector in V belongs to one
and only one hyperplane. Furthermore, F

≠1(0) is just another way of
writing ker F , so F

≠1(0) is a hyperplane through the origin.
In R3, one might visualize the set of hyperplanes corresponding

to a linear functional as an infinite stack of pancakes, extending both
upwards and downwards. The stack could be tilted at any angle. The
pancakes, or hyperplanes, are assigned numbers by the functional. The
hyperplane, through the origin is assigned the number 0; a hyperplane
somewhat above that is assigned the number 1, and hyperplanes be-
tween those two are sequentially assigned numbers from 0 to 1. The
hyperplane twice as far from the origin as hyperplane number 1 is as-
signed number 2, and so on to infinity. On the other side of the kernel
hyperplane, the numbering is similar, but assigns negative values.

This interpretation will be useful later. To prove that a convex set
is restricted to a half-space, it su�ces to find a linear functional F that
is positive on every point in the convex set; the hyperplane F

≠1(0),
or just as conveniently the hyperplane for any negative number, then
defines a half-space which contains the convex set.

The above construction can be reversed: one can start with a hy-
perplane H, and construct a linear functional F . Suppose for the sake
of discussion that H does not contain the origin. Then arbitrarily
choose a vector v in H and write

H = Sn≠1 + v, (1.4)

where Sn≠1 is a subspace of dimension n ≠ 1. Now define F (s) = 0,
for every s in Sn≠1, and define F (v) = 1. v is linearly independent
of Sn≠1, and a basis for Sn≠1 would have n ≠ 1 linearly independent
vectors. By giving the values of F on a set of n linearly independent
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1.3. Convex Sets in Vector Spaces

vectors, F is completely defined as a functional from V to R. (This
construction can easily be modified if one starts with a hyperplane
through the origin, by choosing a parallel hyperplane that does not
go through the origin.) Although F is well-defined, it is not unique:
one could choose a di�erent v in H, or let F (v) be any non-zero real
number. The choice of functionals, however, is limited. Suppose F1
and F2 are two functionals that are constant on H; then it is easy to
see that F1 = kF2, for some non-zero constant k.

To sum up, a non-zero linear functional F on V allows V to be foli-
ated into a set of parallel hyperplanes, which can be naturally indexed
by the real numbers. The kernel of F is not only a hyperplane, but
also a subspace of dimension n ≠ 1, which contains the origin; this sub-
space has index 0. Conversely, given any hyperplane H in V, a linear
functional can be found, whose value on that hyperplane is constant;
this linear functional is unique up to a scaling factor.

1.3 Convex Sets in Vector Spaces
1.3.1 Convex Sets
Although convex sets were originally defined in Euclidean spaces, we
will see that a Euclidean structure is not needed, and that a vector
space by itself has su�cient structure. The main requirement to dis-
cuss convexity is that a unique line segment can be drawn between
any pair of points. In Euclidean geometry, of course, this requirement
is an axiom: the line segments are just ordinary straight lines. In a
vector space, line segments can be constructed from the vector space
axioms. Suppose that v1 and v2 are two vectors in a vector space V

of dimension n. Then define the line segment between them by
I 2ÿ

i=1
–ivi

-----0 Æ –i Æ 1 ’i and
2ÿ

i=1
–i = 1

J
. (1.5)

Geometrically, this set gives a parametrized path from the interval
[0, 1] into V, as can be seen by rewriting Equation (1.5) as

{–1v1 + (1 ≠ –1)v2|0 Æ –1 Æ 1}. (1.6)

The path starts at v2, when –1 = 0, and ends at v1, when –1 = 1.
The vectors defined by Equation (1.5) are called convex combinations

of v1 and v2. If the vector space did have a standard Euclidean struc-
ture, given by an inner product, then this path would correspond to
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Chapter 1. Convexity in Vector Spaces

Figure 1.1: Examples of Convex and Non-Convex Sets

the Euclidean straight line segment between the points. In fact, this
statement holds for an arbitrary (non-degenerate) inner product, so
the path can reasonably be thought of as a straight line segment. The
path is symmetric: it could just as easily start at v1 and end at v2, as
can be seen by reparametrizing so that –2 = 1 ≠ –1. The set of points
in either parametrization is identical.

This algebraic line segment is su�cient to make the following defi-
nition: a subset K of V is convex if and only if, for every pair of points
v1 and v2 in K, the straight line segment given by Equation (1.5) is
also in K. To avoid technicalities, convex sets are sometimes required
to be closed, or one can automatically take the closure of a convex set;
this book will typically assume implicitly that convex sets are closed.

Convex sets can exist in any dimension, but are easily understood
in two dimensions. Figure 1.1 shows a diamond, which is convex, and
a chevron, which is not convex. To see that the diamond is convex,
choose any two points, and draw the line segment between them; no
matter which two points are chosen, the line segment between them
is always within the diamond. This property does not hold for the
chevron: the line segment shown joins two points of the chevron, but
lies partially outside the shape. Thus the chevron is not convex. Sim-
ilar examples can easily be constructed in any dimension.

1.3.2 Convex Hulls
A convex set called the convex hull can be constructed from an arbitrary
set Q of points in a vector space. The convex hull is the smallest convex
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set that contains all the points in Q. As a set, it is given by

hull(Q) =

; mÿ

i=1

–ivi

----vi œ Q ’i, 0 Æ –i Æ 1 ’i, and
mÿ

i=1

–i = 1
<

, (1.7)

where m is any finite number. Note that Equation (1.7) is just Equa-
tion (1.5), with 2 replaced by m. In general, a convex combination of m

vectors is a linear combination of those vectors, with the requirements
that each coe�cient in the combination is between 0 and 1 inclusive,
and that the coe�cients sum to 1. Equation (1.7) then says that the
convex hull of Q consist of all convex combinations of all finite subsets
of Q. If Q consists of three (non-collinear) vectors, then their convex
hull is just the triangle for which those vectors are vertices. Similarly,
the diamond in Figure 1.1 is the convex hull of its four vertices.

Convex hulls can be constructed inductively by adding points one
by one. Figure 1.2 shows an example. To begin with, v1 is a single
point, which is itself a convex set, shown on the far left of Figure 1.2.
Now add the second point v2. The convex hull is a convex set that
contains both v1 and v2, so it must contain the line segment joining
v1 and v2, but no further points are necessary. This new convex set
is second on the left in Figure 1.2. Then add v3. Convexity requires
that the convex hull contains every line segment that joins v3 to any
point on the line segment between v1 and v2. The result, unless the
three points are collinear, is a triangle. To add the fourth point, v4,
one must also add all line segments between v4 and any point in the
triangle. If v4 is in the same plane as the triangle, the result will be
another plane figure, such as the diamond in Figure 1.1. Possibly, v4
is in the interior of the triangle, so it is already a convex combination
of the other three points; in this case the convex hull contains no
new points and remains the triangle, shown on the far right of Figure
1.2. If v4 is outside the plane of the triangle, then the result will be
a tetrahedron, extending into three-dimensional space. This process
can be continued indefinitely, sometimes increasing the dimension and
sometimes not.

The set Q is said to be a set of generators for hull(Q). There can
be multiple sets of generators for the same convex hull. For instance,
let Q be the union of the diamond’s vertices and the diamond’s cen-
ter. Then Q generates the diamond, but the center of the diamond is
superfluous—the set Q with the diamond’s center removed would also
generate the diamond. A convex set cannot always be written as the
convex hull of a finite set of generators. For instance, a circular disc is
the convex hull of all the points on its circumference (an infinite set),

7
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Figure 1.2: Constructing a Convex Hull Inductively

but not the convex hull of any smaller set of points.

1.3.3 Convex Cones
An important kind of convex set in a vector space is a ray. A ray is a
straight line that starts at the origin, and continues on indefinitely in
some direction. Formally, let v be a vector in V. Then the set

ray(v) = {–v|0 Æ –} (1.8)

defines the ray in the direction v. Informally speaking, a ray is half
of the one-dimensional subspace generated by v; any one-dimensional
subspace is a straight line that goes through the origin and continues to
infinity in two opposite directions. The choice of v in Equation (1.8)
is not unique: any positive multiple of v would generate the same
set. Like convex sets, rays can exist in a vector space of arbitrary
dimension.

A convex cone is the convex hull of a set of rays (or, to be tech-
nically correct, it is the convex hull of the union of all the points
contained in all those rays). The set of rays is said to generate its
convex cone. Without loss of generality, we can also define the convex
cone of an arbitrary set of points Q as the convex cone of the rays
resulting from each vector in Q. Formally, define

cone(Q) =

I
mÿ

i=1
–ivi

-----vi œ Q, 0 Æ –i

J
, (1.9)

where m is any finite number. Equation (1.9) can easily be modified to
apply to a set of rays: just define a set Q such that each ray is gener-
ated by one vector in Q. It is easy to see that the same convex set will
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Supporting Hyperplane
Origin

Origin

Figure 1.3: Proper and Improper Convex Cones

result, regardless of the choice of the rays’ generating vectors. The
linear combinations in Equation (1.9) might be called non-negative
combinations, because their coe�cients are all non-negative—but oth-
erwise arbitrary, as opposed to convex combinations, which require in
addition that all coe�cients sum to 1.

Suppose there are two rays. Then their convex cone is the infinite
wedge between them. Note that this wedge is in the smaller of the two
angles between the rays. In the special case in which the two rays are in
opposite directions, their convex cone collapses to a single line through
the origin. If the two rays are in a vector space of dimension greater
than two, then the convex cone is restricted to the two-dimensional
plane that the rays span.

If a third ray is added, then the convex cone is usually a triangular
pyramid whose apex is the origin and whose “base” is infinitely far
away. An instructive example occurs when the three rays are in a
two-dimensional vector space. Figure 1.3 breaks this instance into the
proper and improper cases, which give qualitatively di�erent results.
In this figure, the solid black lines represent rays through the origin,
and the grey regions are the convex cones. At the left of the figure,
all three rays are on the same side of a line through the origin; then
the convex cone is again a wedge, with one of the rays inside it. The
outside line is a hyperplane, which separates the convex cone from
the rest of the vector space; such a hyperplane is called a supporting
hyperplane. This hyperplane is not unique; many choices could be
made for it.

In the second case, no such separating line exists; then the convex
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cone is the entire plane. The dividing line between the two cases
occurs when the total angle of the cone at the origin is 180¶. In the
case on the left, the bounding rays could be spread apart until the
angle between them reaches 180¶. A supporting hyperplane would still
exist, and the convex cone would contain at most a half-space. Once
the angle exceeds 180¶, however, the convex cone contains the entire
vector space. There are no intermediate cases. There could not be,
for example, a convex cone of angle 240¶. In higher dimensions, the
separating line becomes a supporting hyperplane, and the cone can
have higher dimension than two. All the same considerations apply
when there are more than three rays: a supporting hyperplane can be
either found or not, no matter how many rays are in the set.

The cone on the left is called a proper cone, because it fits our
intuitive idea of what a cone should be better than the cone on the
right. Formally, a cone is said to be proper if it does not contain any
one-dimensional subspaces; geometrically, of course, one-dimensional
subspaces are just straight lines through the origin. Equivalently, if a
proper cone contains a non-zero vector v, then it cannot also contain
≠v. This condition allows the construction of a functional which is
always non-negative, whose kernel is a supporting hyperplane through
the origin. An improper cone contains both v and ≠v for some vec-
tor, so any (non-zero) functional on an improper cone takes on both
positive and negative values.

An important case of a proper convex cone in a vector space V
is a non-negative octant, denoted O. Non-negative octants are not
unique—there are di�erent ones for di�erent choices of basis. Once a
particular basis is fixed, O consists of the convex cone generated by the
basis rays, where a basis ray is a ray in the direction of a basis vector.
Equivalently, O contains any vector whose coordinates, when written
in the fixed basis, are all non-negative. The convexity of O is evident,
because a convex combination of any two non-negative vectors is again
a non-negative vector, as can be seen from Equation (1.5).

A simple example is the vector space R3, in Cartesian coordinates.
The non-negative octant is then a “cube” that extends to infinity. It
has three infinite edges, which are the basis rays in the x, y, and z

directions. The co-ordinate vectors for these rays are (1, 0, 0), (0, 1, 0),
and (0, 0, 1). Clearly every non-negative vector can be written as a
non-negative linear combination of these three vectors, and every non-
negative linear combination gives a non-negative vector, showing that
the non-negative octant is identical with the convex cone of the basis
rays. This example easily generalizes to higher dimensions.
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It is easy to see geometrically that there exists a supporting hyper-
plane, in fact many supporting hyperplanes, for O, satisfying the first
case in Figure 1.3. One such hyperplane, H, is the kernel of the linear
functional F , given by

F (v) =
nÿ

i=1
vi, (1.10)

where the vi’s are the coordinates of v in terms of a fixed basis, given
by vectors {b1, b2, ...bn} :

v =
nÿ

i=1
vibi. (1.11)

In R3 with Cartesian coordinates, this functional would be written as
F (x, y, z) = x + y + z.

The hyperplane H is the kernel of F , given by

H = ker F = {v œ V |F (v) = 0}. (1.12)

Since F applied to any non-negative vector (except the origin) is
greater than 0, and since F is 0 on any vector in H, it follows from
the previous discussion that all of O is on one side of H (excepting
the origin itself, which is contained in H). H is therefore a supporting
hyperplane that separates the non-negative octant from a half-space
of V.

1.3.4 Convex Polytopes
A particularly simple and important kind of convex set is called a
convex polytope, which is defined to be the convex hull of a finite set
of points. A polytope can be thought of as an n-dimensional gener-
alization of polygons and polyhedra. A convex polyhedron consists
of a three-dimensional interior, bounded by two-dimensional polygo-
nal faces; each bounding polygon is itself convex and is bounded by
convex line segments, which are themselves bounded by isolated ver-
tices. Similarly, a general n-dimensional convex polytope is bounded
by a set of (n ≠ 1)-dimensional convex polytopes, which are themselves
bounded by (n ≠ 2)-dimensional convex polytopes, and so on, until the
vertices are reached.

Since a convex polytope P is the convex hull of a finite set, we can
write

P = hull ({v1, v2, ..., vm}) . (1.13)
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It is possible, however, that some vi’s are superfluous, like the point
in the interior of the triangle at the right of Figure 1.2. A particular
vi is superfluous if it can be written as a convex combination of other
vectors in the set. The same polytope will result if all the superfluous
members of the set are removed, so we can assume without loss of
generality that the generating set is minimal, that is, that all its ele-
ments are necessary. Furthermore, it can be shown that the minimal
generating set of a polytope is unique. Geometrically, each member of
the minimal generating set is a vertex of the polytope, and each vertex
is a member of the minimal generating set.

A polytope’s vertices have the special property of being exposed
points. A point v of a convex set K is said to be exposed if there exists a
supporting hyperplane H of K, such that H fl K = {v}. Geometrically,
this condition says that K is on one side of H, but that v is the only
point of K that is contained in H. It can also be shown that there
exists a supporting hyperplane that intersects the polytope in exactly
one edge, or exactly one face; a polytope has the attractive property
that all its bounding subsets, of any dimension, are exposed in the
same way its vertices are.

This result will be useful later on, when we consider optimization
over polytopes. A standard optimization problem, dealt with in linear
programming, is to maximize a linear functional over a convex poly-
tope. If the linear functional is seen as a stack of hyperplanes, then its
maxima all occur on a hyperplane that supports the polytope. If the
supporting hyperplane intersects the polytope in only one point, then
the maximum is unique, and is an exposed point of the polytope. For a
vertex of the polytope, the converse is also possible: we can construct
a linear functional whose unique maximum occurs at that vertex.

1.4 Linear Transformations and Convex-
ity

Linear transformations, as defined by Equations (1.1) and (1.2), are
basic to linear algebra, because they preserve much of a vector space’s
structure. This section will show that they also preserve much of the
structure of convex sets.

An important result is that the linear image of a convex set is again
convex. Formally, let K be a convex set in the vector space V, and
let L be a linear transformation from V to W; then the set L(K) is
also convex. To prove this result, let w1 and w2 be any two vectors in
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W, that are also in L(K). By Equation (1.6), L(K) is convex if and
only if –1w1 + (1 ≠ –1)w2 is also in L(K), for any – between 0 and
1. Since w1 is in L(K), there must be at least one v1 in K such that
L(v1) = w1. Similarly there is at least one v2 such that L(v2) = w2.
The convexity of K then implies that –v1 + (1 ≠ –)v2 is in K. By the
linearity of L,

L(–v1 + (1 ≠ –)v2) = –L(v1) + (1 ≠ –)L(v2) (1.14)
= –w1 + (1 ≠ –)w2, (1.15)

implying that –w1 + (1 ≠ –)w2 is in L(K). This statement is su�cient
to prove that L(K) is convex, as was to be shown.

A general linear transformation can significantly distort a shape
in a vector space. For example, the linear image of a circular disc
could be a very elongated elliptical disc, and the linear image of the
diamond in Figure 1.1 could be a square or a parallelogram with a
di�erent orientation. Despite these distortions, the convexity of the
shapes is preserved: a diamond could not be sent to a chevron, for
example.

Not only do linear transformations preserve convexity, but they
also preserve some of the internal structure of a convex set. Sup-
pose, for example, that K is the convex hull of a set of vectors P =
{v1, v2, ...vm} in V. Then it is easy to see that L(K) is the convex hull
of L(P), in the vector space W. Thus {L(v1), L(v2), ...L(vm)} is a
generating set for L(K). Note, however, that the minimality of a gener-
ating set might not be preserved. That is, even though {v1, v2, ...vm}
is the smallest set in V that can generate K, it does not follow that
{L(v1), L(v2), ...L(vm)} is the smallest set in W that can generate
L(K). For example, the vertices of a cube are a minimal generating
set for the cube. Under a linear transformation, one face of the cube
could be preserved, but a vertex of the opposite face could be sent
to the interior of the original face. The linear image would then be
a square, which, like the original cube, is convex. A square, however,
has only four minimal generators (its vertices), while there are eight
images of the cube’s vertices. While those eight image points generate
the square, any image points in the interior of the square are super-
fluous, so the image points as a whole are not a minimal generating
set.

Linear transformations similarly preserve much of the structure of
convex cones. Suppose that K is a convex cone in V, and that K is gen-
erated by the rays corresponding to the vectors {v1, v2, ...vm} in V.
Then it is straightforward to show not only that L(K) is a convex cone
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in W, but also that the rays generated by {L(v1), L(v2), ...L(vm)}
are a generating set for the new convex cone. Again, some of those
image rays might be superfluous, if L sends one of the vi’s to the in-
terior of the new cone. The fact that linear transformations preserve
convex cones will be directly relevant to colour investigations in Chap-
ter 4, when we investigate a transformation from the vector space of
radiometric functions to the vector space of perceived colours.

1.5 Euclidean Notions
Although this book emphasizes geometric naturalness in its presenta-
tion, some very natural Euclidean notions, such as distance and angle,
do not appear, and in fact are not needed. Somewhat surprisingly, the
combinatorial structure—the fact that certain vectors sum to certain
other vectors—and the linear relationships between vector spaces con-
tain all the information needed for developing colour matching math-
ematically. A general vector space, in fact, has no notion of length or
angle, unless one imposes some additional properties, such as an inner
product. The reader should be warned against using the standard dot
product to define magnitudes or perpendicular projections, or to in-
terpret conclusions in those terms: the dot product implicitly assumes
that an orthonormal basis exists, while the vector spaces used in this
book provide no concepts of right angle or unit length.

1.6 Chapter Summary
This chapter has introduced the concept of convexity, in a vector space
setting. The following standard definitions and results of linear algebra
were used:

1. A linear functional F is a linear transformation from a vector
space V to the real numbers R,

2. A hyperplane H (or more properly, an a�ne hyperplane) in a
vector space V of dimension n is an (n ≠ 1)-dimensional vector
subspace, that has been translated by the addition of an arbi-
trary vector v,

3. Let – be a real number, and let F be a non-degenerate functional
(i.e. F takes on some non-zero values) on V . Then the pre-image
F

≠1(–) is a hyperplane H in V ,
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4. Suppose F is a non-degenerate functional on V . Then the set
of all hyperplanes, that are pre-images under F of an arbitrary
real number –, foliate V : each vector v in V belongs to exactly
one hyperplane. The hyperplanes can be indexed by assigning
the value F (H) to each hyperplane H in the foliation. Under
this indexing, the hyperplane F

≠1(0) contains the origin, and
the hyperplanes with positive indices are stacked linearly, in the
order given by their indices, away from the origin; a symmetrical
result holds for hyperplanes with negative indices,

5. If two functionals produce the same hyperplane foliation, then
the two functionals are scalar multiples of each other.

A vector space V contains su�cient structure to define and con-
struct convex sets. The following standard definitions and results were
introduced:

1. Given two vectors v1 and v2 in V, the line segment between
them is the set defined by

{–1v1 + (1 ≠ –1)v2|0 Æ –1 Æ 1}. (1.16)

Using – as an index parametrizes the line segment continuously,
as an image of the real interval [0, 1],

2. A subset K of V is convex if, for every v1 and v2 in K, the line
segment between v1 and v2 is contained in K,

3. Let Q be a set of points in V . Then the convex hull of Q, denoted
hull(Q), is the smallest convex set that contains every point in
Q. As a set, hull(Q) is given by

hull(Q) =

; mÿ

i=1

–ivi

----vi œ Q ’i, 0 Æ –i Æ 1 ’i and
mÿ

i=1

–i = 1
<

. (1.17)

Algebraically, hull(Q) is the set of convex combinations of arbi-
trary finite subsets of Q, where a convex combination of vectors
is a linear combination of those vectors, whose coe�cients are
between 0 and 1 inclusive, and which sum to 1,

4. Let Q be a set of points in V . Then the convex cone of Q, denoted
cone(Q), is the set

cone(Q) =

I
mÿ

i=1
–ivi

-----, vi œ Q, 0 Æ –i

J
, (1.18)

5. A convex polytope (sometimes called just a polytope) is the con-
vex hull of a finite set of points,
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6. Geometrically, a convex polytope can be written as the convex
hull of its vertices, which are a unique subset of the polytope.

7. Each vertex v of a convex polytope P is an exposed point, that
is: there exists a hyperplane H such that H contains v, but H
contains no other point of P.

Linear transformations a�ect convex subsets of an underlying vec-
tor space as follows:

1. Linear transformations preserve convexity. Suppose a linear
transformation L goes from a vector space V to a vector space
W, and that K is a convex set in V. Then L(K) is a convex set
in W.

2. Furthermore, if Q is a set of points in V, then a linear trans-
formation L preserves some of the internal structure of convex
sets:

L(hull(Q)) = hull(L(Q)), and (1.19)
L(cone(Q)) = cone(L(Q)). (1.20)

Finally, the reader should keep in mind that a general vector space,
and in particular the vector spaces treated in this book, have no con-
cept of distance or angle, so the book’s conclusions should not be
understood in Euclidean terms. Instead, combinatorial and linear re-
lationships provide all the structure needed.
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Chapter 2

Zonohedra

2.1 Introduction
A zonohedron Z is a special kind of convex polytope, that consists
of all the linear combinations of a set of vectors in R3, provided that
the coe�cients in each combination are between 0 and 1 inclusive.
The set of such combinations is a special instance of the Minkowski
sum, sometimes also called the vector sum. Zonohedra occur in colour
science when simple colours, such as the primaries of an electronic dis-
play or single-wavelength radiometric functions, combine to produce
new colours. Each simple colour can be represented as a vector in
three-dimensional perceptual colour space. The vector for a colour
combination is a linear combination of vectors for the simple colours,
with the physical restriction that the coe�cients in the combination
cannot exceed 1. The set of all possible colour mixtures is thus a zono-
hedron. This chapter derives some geometric properties of zonohedra.
Later chapters will use the geometric properties to derive further re-
sults about colour.

The Minkowski sum of two subsets of a vector space is a new
subset, consisting of all sums of pairs of vectors, where the first vector
belongs to the first subset and the second vector belongs to the second
subset. This definition can easily be extended to include an arbitrary
number of subsets, rather than just two, and the order of the subsets
is immaterial. Typically, the Minkowski sum is applied to convex
subsets, in which case it produces another convex subset. Apart from
its simple algebraic definition, the Minkowski sum also has a concrete
geometric interpretation: the Minkowski sum of two subsets is, up to
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a translation, the set produced by placing a copy of the first subset
over every point of the second subset. More dynamically, one subset
is “swept” over the entirety of the other subset, and any point that is
covered by the sweeping action is contained in the Minkowski sum.

Geometrically, a vector can be interpreted as either an isolated
point in a vector space, or as the line segment that joins that point
to the origin. The Minkowski sum can be applied to a set of vec-
tors, called generating vectors, by interpreting those vectors as line
segments, which are convex subsets of the overall space. In three di-
mensions, the Minkowski sum of a set of vectors is called a zonohedron.

The Minkowski sum of two vectors is the filled parallelogram that
is swept out when one vector slides over the other. Visually, one can
picture the first vector moving continuously as its tail slides along the
line segment corresponding to the second vector. Then sweep a third
vector, that is not coplanar with the first two, over the parallelogram,
producing a solid parallelepiped. This solid is the Minkowski sum of
all three vectors, and is a zonohedron. In R3, a fourth vector could be
Minkowski-summed with the parallelepiped, producing a new, more
complicated, zonohedron, and in fact any number of vectors could be
similarly Minkowki-summed to produce a zonohedron.

Zonohedra have many useful properties. For instance, a zonohe-
dron’s faces are parallelograms, and its edges are translated copies of
the generating vectors. Each vertex can be written uniquely as the sum
of all the generating vectors that lie on one side of a plane through the
origin. A zonohedron is encircled by bands called zones, where each
zone corresponds to a generating vector. Furthermore, a zonohedron
is centrally symmetric. This chapter constructs Minkowski sums and
zonohedra intuitively, and derives such properties. While zonohedra
generalize naturally to zonotopes in arbitrary dimensions, we will re-
strict ourselves to R3, which is su�cient for colour matching. While
no results in this chapter are new, their systematic and concrete pre-
sentation from first principles is believed to be the only one available
so far.

2.2 The Minkowski Sum
2.2.1 Definition and Properties
In visual terms, the Minkowski sum, sometimes also called the vector
sum, can be pictured as a way of adding shapes or solids, or, indeed,
arbitrary subsets of a vector space. It is a simple, intuitive construc-
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tion, both algebraically and geometrically. Formally, let A and B be
two non-empty subsets of a vector space Rn. Then their Minkowski
sum, denoted ü, is defined as

A ü B =
)

vA + vB
--vA œ A and vB œ B

*
. (2.1)

In this equation, vA and vB are both vectors in Rn, and the plus sign
on the right-hand side indicates vector addition.

The commutativity of the vector addition in Equation (2.1) implies
that the Minkowski sum is commutative, so A ü B = B ü A. Further-
more, the associativity of vector addition implies that (A ü B) ü C =
A ü (B ü C), if there were a third subset C. Together, commutativ-
ity and associativity imply that the Minkowski sum of any number of
summands is well-defined, regardless of the order of those summands.

Although the Minkowski sum is defined for arbitrary subsets A and
B, it is most commonly applied to convex subsets, which will be the
case of interest for this book. When A and B are both convex, then
A ü B is also convex. To demonstrate this statement, let v and w be
two vectors in A ü B, and let – be a scalar between 0 and 1; convexity
will follow if we can show that –v+ (1 ≠ –)w œ A ü B. Since v and w
are both in the Minkowski sum of A and B, there must exist vectors
such that

v = vA + vB, (2.2)
w = wA + wB, (2.3)

where the subscripts indicate which subsets the vectors belong to.
Since A and B are both convex, it follows that

–vA + (1 ≠ –)wA œ A, (2.4)
–vB + (1 ≠ –)wB œ B. (2.5)

Equation (2.4) gives a vector in A, and Equation (2.5) gives a vector
in B, so their sum is in A ü B :

–(vA + vB) + (1 ≠ –)(wA + wB) œ A ü B. (2.6)

Substituting Equations (2.2) and (2.3) into Equation (2.6) gives

–v + (1 ≠ –)w œ A ü B, (2.7)

implying that A ü B is convex, as was to be shown.
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2.2.2 Some Two-Dimensional Examples
Though Minkowski sums are defined in arbitrary dimensions, some
simple two-dimensional examples provide geometric motivation. For
the first example, let A be a triangle in the positive quadrant of R2,
and let B be a small disc centered on the origin, as shown in the left
of Figure 2.1. Let vA be a point in the triangle. It follows easily from
the definition that A ü B is the union of all the sets vA + B, over all
points vA in A. The set vA +B is a small disc that is centered on vA.
This disc is a translation of the set B, and is contained in A ü B.

A

B

A+B

Figure 2.1: An Example of a Minkowski Sum

If vA is well in the interior of A, then vA + B is contained com-
pletely in A. If vA is on the perimeter of A, however, then vA + B
extends somewhat outside A. The middle of Figure 2.1 shows the trans-
lated discs along the triangle’s edges; these discs are included in the
Minkowski sum. One can picture the disc sliding along each edge, and
sweeping out a band on either side of the edge; the band on the tri-
angle’s exterior produces a parallel contour that expands the triangle.
Once the disc reaches a vertex, the band changes direction abruptly,
and its contour is now an arc of the disc rather than a straight line.

The Minkowski sum is the union of the triangle’s interior, the bands
along the three edges, and the circular sectors at the three vertices, as
shown on the right in Figure 2.1. A unifying interpretation is that the
Minkowski sum consists of all the points the disc would cover, if it were
swept over every point on the triangle. Note that the sweeping is done
by fixing a point on the disc, in this case its center, and letting that
center sweep over the triangle. The origin was chosen as a convenient
location for this example because, when the center is at the origin,
adding it to A does not move A.
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Figure 2.2: The Perimeter of a Minkowski Sum

An interesting property, which applies when A and B are convex
sets, is that the perimeter of the Minkowski sum consists of reassem-
bled pieces of the perimeters of the two summand sets. Figure 2.2
shows the pieces for the Minkowski sum in Figure 2.1. The three
straight pieces are just translations of the triangle’s three edges, from
which one could reconstruct the triangle. Similarly the three rounded
pieces are just translations of segments of the disc’s circumference,
from which one could reconstruct the disc.

In the special case when one of the summand sets is a single vec-
tor, the Minkowski sum is just a translation of the other set by that
vector. In the trivial case when one summand set consists solely of the
origin, the Minkowski sum is just an unmodified copy of the other set.
Suppose that the disc in Figure 2.1 was not centered at the origin, but
somewhere else, as shown in Figure 2.3. Then the new Minkowki sum
would just be a shifted version of the original sum, as shown on the
right, but would be otherwise identical to the Minkowski sum in Fig-
ure 2.1. A translated version of the triangle would produce a similar
shift. Often the shape of the Minkowski sum is of more interest than
its location. In that case, the sum can be “normalized” by translating
it to a convenient location, or the shape can be studied without regard
to location.

The discussion so far has been in two dimensions, but should allow
the Minkowski sum in three dimensions, and even in arbitrary dimen-
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A

B

A + B

Figure 2.3: Location vs. Shape for a Minkowski Sum

sions, to be easily visualized. The sum has been interpreted as the set
of all the points covered when one summand is swept over the other
summand, and this interpretation applies to R3 just as well as R2,
except that areas now become volumes. In Rn, when n > 3, volumes
can be replaced with their higher-dimensional analogues.

2.3 Zonohedra
Zonohedra are a special kind of Minkowski sum, which occur when
all the summands are vectors in R3. In this context, a vector in R3,
rather than being thought of as a point in space, is thought of as the
line segment joining that point to the origin; the line segment contains
all the points that would be covered if the vector were drawn as an
arrow with its tail at the zero vector. When speaking of zonohedra, the
terms vector and segment will be used interchangeably. Given a finite
set of vectors in R3, then, the Minkowski sum of the resulting line
segments is called a zonohedron. A similar Minkowski sum is called a
zonogon in R2, and a zonotope in an arbitrary Rn.

This section and those following will derive many interesting prop-
erties of zonohedra. For instance, a zonohedron’s faces are, in the
generic case, all parallelograms, and each edge is a translated copy of
a generating vector. A zonohedron is encircled by many crisscrossing
bands called zones. A zone consists of all the parallelogram faces,
such that one edge of the parallelogram is a translation of a given
generating vector. Every vertex of a zonohedron is the sum of all the
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2.3. Zonohedra

generating vectors that are on one side of a plane through the origin.
Furthermore, a zonohedron is centrally symmetric: its shape at the
origin and its shape at the farthest vertex are reversed, but otherwise
identical. Cyclic zonohedra are a useful subclass, whose zones take a
convenient form; cyclic zonohedra arise when the generating vectors
are all on the boundary of a convex cone.

Zonotopes occur naturally when a number of ingredients, in a gen-
eral sense, are combined, again in a general sense, to make a new mix-
ture, and the maximum quantity of each ingredient is limited. Each
ingredient can be represented by a vector whose head represents the
maximum possible quantity of that ingredient while the tail, at the
origin, means that none of that ingredient is used. The set of all pos-
sible mixtures is the Minkowski sum of the ingredients’ vectors, and is
thus a zonotope.

Later in this book, surface colours and other objects of interest
will be expressed as just such mixtures. At each wavelength, a sur-
face colour reflects between 0 and 100 percent of the incoming light.
The colour corresponding to each wavelength is a vector in a three-
dimensional perceptual space. The contribution at each wavelength
is an “ingredient” in the overall colour, which is the “mixture” of the
reflected light at each wavelength. The set of all surface colours, when
viewed in a certain illumination, is called an object-colour solid, and
this interpretation implies that it is a zonohedron. By similar construc-
tions, an electronic display gamut, which is the set of all the colours
that that display can produce, is also a zonohedron. The zonohedral
form of these objects of colour science is the central insight of this
book. Later chapters will use the formalism of this chapter to con-
struct colour zonohedra, and then derive results in colour science from
zonohedral properties.

2.3.1 Definitions
Suppose we denote a set of m vectors, or equivalently m line segments
starting at the origin, in Rn, by

G = {v1, v2, ..., vm}. (2.8)

Then the zonotope Z generated by G is defined to be the Minkowski
sum of those segments:

Z(G) = v1 ü v2 ü ... ü vm. (2.9)
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G is referred to as the set of generating vectors, or just generators, for
Z. When n = 2, Rn is the plane, and Z is called a zonogon. When
n = 3, Rn is three-dimensional space, and Z is called a zonohedron.

Since the line segment corresponding to a vector v is given by the
set

{–v|0 Æ – Æ 1}, (2.10)

it follows that an equivalent definition for a zonotope is

Z(G) =
I

mÿ

i=1
–ivi

-----0 Æ –i Æ 1 ’i

J
. (2.11)

This definition of a zonotope is similar to the definition of a convex
hull given by Equation 1.7, except that the coe�cients in a convex
hull must sum to 1, while zonotope coe�cients lack that restriction,
although they must still be between 0 and 1. Such a linear combina-
tion, where all the coe�cients are between 0 and 1 inclusive, is called a
zonal combination. Equation (2.11) makes calculations easier, because
the –i’s provide a convenient coordinatization. For geometric under-
standing, however, Equation (2.9) is preferred, because it indicates
how a zonotope is constructed.

While the set of vectors G is arbitrary, this book will simplify cal-
culations by further assuming that each vector in G is in the non-
negative octant O relative to some basis. Then all the coordinates of
the vi’s are non-negative, and the zonotope as a whole is contained
in the non-negative octant. Such a zonotope is referred to as a non-
negative zonotope. Non-negative zonotopes or zonohedra are adequate
for colour science, whose geometric objects are non-negative by con-
struction. This approach avoids technical complications, such as two
generating vectors that are in exactly opposite directions.

One immediate conclusion, using the results of Section 2.2.1, is
that a zonotope is always convex, since it is the Minkowski sum of
line segments, which are themselves convex. Zonotopes, and in par-
ticular zonohedra, have considerably more structure, however, which
this chapter will elucidate, after investigating some examples. The
first examples will be some simple zonogons in R2, which will then be
generalized to zonohedra in R3.

24



2.4. Construction of Zonogons

2.4 Construction of Zonogons
A zonogon is a two-dimensional zonotope. For a simple example, start
with two vectors, v1 and v2, in the non-negative octant of R2, as shown
on the left of Figure 2.4. The Minkowski sum of the two vectors, or
of their corresponding segments, is the area swept out when the first
segment is moved continuously, with its tail following the entire length
of the second segment. The right side of Figure 2.4 shows the result:
the zonogon is a parallelogram with one vertex at the origin.

v1+v2

v1

v2

0
v1

v2

0
Figure 2.4: A Zonogon with Two Generating Vectors

This construction is symmetric: if the second vector swept over the
first, the same parallelogram would result. Algebraically, the symme-
try results from the commutativity of the Minkowski sum. The con-
struction also increases area: even though each segment has zero area,
their Minkowski sum has positive area. In this simple case, Equation
(2.11) indicates a coordinatization for the parallelogram: any point is
a unique linear combination of v1 and v2, both of whose coe�cients
are between 0 and 1.

Now let us add a third vector, v3, as shown in the left of Figure
2.5, and find the zonogon generated by all three vectors. Since the
Minkowski sum is both commutative and associative, the order of its
summands is immaterial, and we can write

v1 ü v2 ü v3 = (v1 ü v2) ü v3. (2.12)

The Minkowski sum v1 ü v2 already appears as a parallelogram in
Figure 2.4, so let v3 sweep over that parallelogram. The resulting
zonogon is the irregular, filled hexagon on the right in Figure 2.5.

This zonogon construction is again symmetric, this time in three
vectors instead of two.. Had we started with the parallelogram v1 ü v3,
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v1+ +v2 v3

v1

v2

v3

0
v1

v2

0

v1+v3

+v2 v3

Figure 2.5: A Zonogon with Three Generating Vectors

for example, and then swept the vector v2 over it, we would have
produced the same hexagon. The –i’s from Equation (2.11) again
suggest coordinates for the points of the hexagon, but this time the
coordinatization is not unique, because the generating vectors are not
linearly independent. Di�erent coordinatization schemes correspond
to di�erent decompositions of the hexagon into parallelograms; Figure
2.6 shows two decompositions.

v1+

v1+ +v2 v3

v1+v2

v1

v2

0

v1+v3

+v2 v3

v1+ +v2 v3

v3

v1

v2

0

v1+v3

+v2 v3

Figure 2.6: Two Decompositions of the Zonogon from Figure 2.5

The marked point would have coordinates

[–1, –2, –3] = [1/2, 0, 1/2] (2.13)

in the first decomposition, but coordinates

[–1, –2, –3] = [1, 1/3, 1/8] (2.14)

in the second decomposition. While decompositions provide a conve-
nient coordinate framework, other sets of –’s, that are not tied to a
decomposition, are also possible coordinates for the indicated point.
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2.4. Construction of Zonogons

Figure 2.7 shows another interesting property: the hexagon’s peri-
meter consists entirely of translated copies of the generating vectors.
Each vector appears twice, on opposite sides of the hexagon. In two
dimensions, a set of non-negative generating vectors can be placed in
clockwise order. From the left side of Figure 2.5, for instance, the
clockwise ordering is v2, v3, v1. When traced out from the origin, the
boundary consists of two copies of the generators, in clockwise order.
In Figure 2.7, the edge sequence is v2, v3, v1, v2, v3, v1, which is just
the clockwise ordering listed twice.

v1
v2

v3

v1

v2

v3

Figure 2.7: Translated Generating Vectors Make Up a Zonogon’s
Boundary

This interpretation also shows that the coordinates of the vertices
have a special form: each vertex can be written as a sum of generating
vectors. In terms of Equation (2.11), a vertex can be written as a
linear combination of generators, such that each coe�cient –i in the
combination is either 0 or 1. Formally, define the nodes of a zonotope
as the set

N (Z) =

I
mÿ

i=1
–ivi

-----–i œ {0, 1} ’i

J
. (2.15)

Although every vertex is a node, it is not the case that every node is
a vertex; nodes can also appear in the interior of the zonogon. Figure
2.6 shows, for instance, that v3 and v1 + v2 are both interior nodes.
We will later use hyperplanes to derive expressions for a zonotope’s
vertices.

As another consequence of the non-negative restriction, a zono-
gon, and more generally a zonotope, has a unique minimal point, the
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origin, which occurs when every –i is 0, and a unique maximal, or
terminal, point, which occurs when every –i is 1. Even though a gen-
eral vector space implies no notion of distance, the terminal point is,
loosely speaking, the “farthest” point from the origin. The center of
the zonogon is halfway between the origin and the terminal point. The
zonogon is symmetric around the center: a 180¶ rotation about the
center would map the zonogon to itself.

From the examples already given, adding further generating vectors
to produce new zonogons is straightforward: simply sweep the new
vector over the zonogon for the previous vectors. The result will be
a larger, more complicated, polygon that is still convex and centrally
symmetric, but whose boundary now includes two copies of the new
vector.

2.5 Vectors in General Position
A special case occurs when one generator is a scalar multiple of another
generator. In this case, an edge of the zonogon consists of those two
vectors laid end to end, and a node that is not a vertex appears on
the boundary. This configuration makes sense combinatorially, but is
redundant geometrically, so we will use the concept of general position
to avoid it.

A set of vectors G in Rn is said to be in general position if every
subset of n vectors is linearly independent. Geometrically, a set of vec-
tors in R2 is in general position if no two of them are scalar multiples
of each other, and vectors in R3 are in general position if no three of
them are coplanar; analogues hold for higher dimensions. Requiring
G to be in general position, or checking that an empirically found G is
in general position, sidesteps many technical complications and allows
for simpler descriptions. If generators in R2 are in general position,
for instance, then each edge of a zonogon is a translated copy of a
single generator. Otherwise, an edge might consist of two generators,
laid end to end. The property of being in general position is generic:
an arbitrary set is most likely already in general position, and, if it is
not, a negligible adjustment will put the set in general position.

In the colour science applications to be studied, the generating
vectors are determined by empirical measurements, which are only ac-
curate to some Á, so there is no information lost in adjusting any of the
measurements by an amount that is much smaller than Á. As a result,
we can always obtain a set in general position, that agrees well with
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the measured data. Strictly speaking, any measurement uncertainty,
no matter how small, makes it impossible to determine that two mea-
sured vectors are scalar multiples of each other, or that three measured
vectors are coplanar; decisions about linear dependence therefore pro-
ceed from theory or modeling. In fact, we will see a case in which
a set of vectors is nearly, but not quite, coplanar, and it will not be
obvious whether the non-coplanarity is genuine, or an artifact of data
smoothing.

2.6 Construction of Zonohedra
A zonohedron is constructed similarly to a zonogon, but in three di-
mensions instead of two. Like the previous section, we will build a
non-negative zonohedron generator by generator, letting interesting
properties emerge naturally.

2.6.1 An Example
Begin with two generators in R3. The zonohedron they generate is just
the parallelogram shown in Figure 2.8, which is similar to Figure 2.4.
That parallelogram is located in the plane spanned by the two gen-
erators. Now add a third generator, v3, such that the three vectors
are in general position, and are thus not coplanar. The Minkowski
sum can still be found by sweeping v3 over every point of the paral-
lelogram formed by the first two generators. The result is the solid
parallelepiped shown in Figure 2.9. Each edge of the parallelepiped is
a translated copy of one of the generating vectors. The faces of the
parallelepiped are parallelograms, three of which meet at the origin.
Each such parallelogram is the Minkowski sum of two of the genera-
tors. Like any Minkowski sum, the construction of the parallelogram is
symmetric. We could have started with any parallelogram, and swept
the remaining generator over it, to create the same final parallelepiped.

Now suppose we add a fourth generator, v4. To construct the new
zonohedron, let the fourth generator sweep over the current paral-
lelepiped, producing the solid body shown in Figure 2.10. The fourth
generator is drawn as a dotted line starting at the origin—the generat-
ing vector itself does not appear on the boundary of the zonohedron,
though translated copies of it do.

Figure 2.11 shows another interpretation of the construction of
the zonohedron in Figure 2.10. Suppose the boundary of the paral-
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v1
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Figure 2.8: A Zonohedral Parallelogram

v1
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v3

0
Figure 2.9: A Zonohedral Parallelepiped
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v4
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Figure 2.10: A Zonohedron with Four Generators
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v1

v2

v3

0

Figure 2.11: Another Construction of the Zonohedron in Figure 2.10

lelepiped in Figure 2.9 were broken up into two sections, with each
section containing three faces. Then one of those sections could be
translated away from the other section, along the dotted lines, by the
vector v4, as shown in Figure 2.11. The total volume swept out by
this translation would comprise the zonohedron in Figure 2.10, and it
is easy to see how copies of v4 appear as edges in that zonohedron.

Clearly this construction could be continued indefinitely, with as
many generators as desired. The construction also makes clear the
e�ects of a generator’s magnitude, versus the e�ects of its direction.
Suppose the generator v4 maintained its direction, but that it was mul-
tiplied by 2, doubling its magnitude. Then the construction in Figure
2.11 would still hold, but the two pieces of the parallelepiped would
be twice as far apart. Similarly, shrinking v4, without changing its di-
rection, would move the two pieces closer together. The relationships
between the zonohedron’s vertices, edges, and faces, however, would
be unaltered; these relationships are sometimes referred to as its com-
binatorial structure, and have historically been a major motivation for
studying zonohedra.

Changing the direction of v4, on the other hand, could require
breaking up the parallelepiped into two new pieces, di�erent from the
previous ones, and could change the combinatorial structure. Alge-
braically, the current v4 is a positive linear combination of the other
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three generators, so it is “inside” the parallelepiped. The final zonohe-
dron thus has three edges meeting at the origin. If v4 was not a positive
linear combination, then it would be “outside,” and four edges would
meet at the origin. These considerations will become important later
when discussing cyclic zonohedra.

2.6.2 Zonohedral Generators in General Position
Recall that a set of generating vectors in an n-dimensional vector space
is in general position if every subset of n vectors is linearly indepen-
dent. In three dimensions, the general position requirement avoids
the case where one face of a zonohedron consists of three or more gen-
erators; instead, each face is a parallelogram, each edge of which is
a translated copy of a generator. Since a parallelogram’s four edges
break up into two pairs of parallel vectors, exactly two generators are
needed to specify each parallelogram face.

To see the relevance of general position, begin with the six-sided
zonogon shown in Figure 2.5. The three generators shown on the
left all lie in R2. Extend this zonogon to a zonohedron by adding a
fourth generator, which does not lie in the plane of the first three
generators. Figure 2.12 shows the result, with the original zonogon
in grey. The zonohedron is constructed by sweeping v4 over that
zonogon, resulting in a translated copy, that is also shown in grey. The
first three vectors are in general position in R2, because no two of them
form a linearly dependent set. They are not in general position in R3,
however, because the subset consisting of all three of them is linearly
dependent. Geometrically, the lack of general position prevents the
grey face of the zonohedron from being a parallelogram.

The construction method shows that a zonohedron’s faces are all
parallelograms if and only if the generators are in general position.
Formally, we will present a demonstration that uses induction on the
number of generators. Suppose that there are k generators, and that
the zonohedron they generate only has parallelograms for faces. Now
add a (k + 1)th generator, which does not form a linearly dependent
set when combined with any two of the original generators. The new
zonohedron is constructed, as in Figure 2.11, by breaking the original
zonohedron into two pieces (with breaks occurring only along edges,
not on faces), translating one piece by vk+1, and introducing a new set
of faces between the pieces. By the construction, each new face must
have two edges parallel to vk+1, and two edges that are parallel to one
of the original edges. Because of the assumption of general position,
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v3

v1

v2

0

v4

Figure 2.12: A Zonohedron when Generators are Not in General Po-
sition

the new vector cannot be in the a�ne plane spanned by any pair of the
original vectors, so it cannot be in the plane of any of the zonohedron’s
original faces. Thus all the new faces are in di�erent planes from all
the old faces. Since each new face has two pairs of parallel sides, each
new face is a parallelogram, in a distinct plane from all previous faces.
General position is thus su�cient to insure that all the faces of the
new zonohedron are parallelograms.

Conversely, suppose that the generators are not in general position,
so that three generators are in the same plane. Since the order of
the generators is irrelevant, start the construction of the zonohedron
with those three generators. They will generate a non-parallelogram
face, such as appears in Figure 2.5. This face will be preserved (or
perhaps be extended, if other vectors are also in that plane) as further
vectors are added, and so will appear in the final zonohedron. General
position is thus necessary if all the faces of the final zonohedron are
parallelograms. The su�ciency and necessity together imply the “if
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and only if” statement in the preceding paragraph, as was to be shown.
Apart from introducing many di�culties in computations, non-

parallelogram faces are non-generic, in the sense discussed earlier, and
can often be eliminated. In particular, when the generating vectors
result from a measurement process, their coordinates are always some-
what uncertain, so no information is lost by adjusting one them by an
amount that is orders of magnitude smaller than the measurement
variability. If three vectors are coplanar, then modifying one vector
very slightly moves it out of the plane spanned by the other two.

In Figure 2.12, for example, v3 could be raised a tiny amount so
that it is no longer in the same plane as v1 and v2. Figure 2.13 shows
the result. The point v3 + v4 in Figure 2.13 is now slightly above
the upper grey face, while in Figure 2.12 it was right on that face.
The irregular hexagon has been decomposed into three parallelogram
faces, all in slightly di�erent planes. Furthermore, the di�erence from
the original zonohedron can be made as small as desired. Because of
this flexibility, generators will frequently be assumed to be in general
position for the rest of this book, even when it is not explicitly stated.

2.6.3 Zones
A zone is a sort of encircling band that lies on a zonohedron’s surface.
Formally, a zone corresponds to a generating vector and is defined
to be the set of all the zonohedron’s faces that contain a translated
copy of that vector as one of their edges. Figure 2.11 motivates the
concept. That figure inserts a band of six parallelograms between two
separated halves of a parallelepiped. Each parallelogram face of the
inserted band incorporates a copy of the vector v4 as an edge. The
band of six parallelograms is the zone corresponding to the generator
v4. Figure 2.14 shows the zone shaded in grey. In this view of the
zonohedron, the lighter faces are seen from the outside; the darker
faces, which are partially hidden by the lighter faces, can only be seen
by looking through the zonohedron’s outer surface.

Constructing a zone is straightforward. As an example, start with
any copy of v4, as an edge E1 on the zonohedron. That edge will
be the common edge to two parallelogram faces, P1 and P2. Include
both those faces in the zone. The parallelogram face P2 will have a
second edge E2, which is also a translated copy of v4, and which is
located across P2, on the opposite side from the original edge E1. E2
will be the edge common to the parallelogram face P2, and to another
parallelogram face P3. Include P3 in the zone, and continue, adding

34



2.6. Construction of Zonohedra

v3

v1

v2

0

v4

v3 v4+

Figure 2.13: An Adjustment of Figure 2.12, such that Generators are
in General Position
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Figure 2.14: The Zone Corresponding to v4
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a new parallelogram face at each step. The process must eventually
terminate, if only because a zonohedron has a finite number of edges
and faces. By a similar finiteness argument, and the fact that each
edge bounds exactly two parallelograms, the zone must eventually end
where it started. The result is that a zone is a band of parallelograms
that encircles the zonohedron.

A priori, it seems possible that a zone could consist of more than
one band. The zonohedron’s convexity, however, implies that only one
band can occur, as will now be shown. Recall that the order of the
summands in a Minkowski sum is immaterial. We can therefore reorder
the m generating vectors if necessary so that the generating vector that
corresponds to a zone of interest is the last, or m

th, summand. Denote
the zonohedron of the first m ≠ 1 generators by Zm≠1. Then the total
zonohedron Z is given by

Z = Zm≠1 ü vm. (2.16)

Now project Zm≠1 along vm onto a two-dimensional plane, pro-
ducing a filled polygon P, with boundary B. (More visually, P could
be seen as the shadow cast by Zm≠1, when illuminated by light rays
parallel to vm.) The pre-image of each side of P is exactly one edge
of Zm≠1, but not a part of a face—if it were part of a face, that face
would contain two edges which were coplanar with vm; since edges are
translated copies of generators, the generators would not be in gen-
eral position. By a similar argument, the pre-image of each vertex of
P is exactly one vertex of Zm≠1. Since projection is continuous, the
pre-image of B is an unbroken sequence of edges of Zm≠1. Any two
consecutive edges in the sequence meet at a common vertex of Zm≠1.
Topologically, the sequence of edges forms a circle.

To add vm to Zm≠1, in the Minkowski sense, split Zm≠1 apart
along this sequence of edges, as was done in Figure 2.11, and insert
copies of vm at each vertex (which will become two separated vertices
after splitting) in the sequence. The inserted copies form the m

th zone.
Since the sequence of edges is a topological circle, the inserted copies
form a single topological cylindrical band. All inserted copies belong
to this cylinder, showing that the m

th zone, and similarly any other
zone, contains exactly one band.

Another surprising result is that any two zones intersect; in fact
they contain two faces in common, on opposite sides of the zonohedron.
Figure 2.15, for instance, shows the band for v1. A comparison with
Figure 2.14 shows that the 1st and the 4th zones intersect at the two
faces whose edges are copies of v1 and v4. An equivalent statement of
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Figure 2.15: The Zone Corresponding to v1

this result is that, for any pair of generators vi and vj , a zonohedron
contains two parallelogram faces whose edges are translations of vi

and vj . Again, an argument from construction makes this result clear.
Begin the construction of the zonohedron with vi and vj , so the first
stage will be a parallelogram with edges vi and vj . The Minkowski sum
with the third generator will be a parallelepiped, two opposite faces of
which are ij-parallelograms. Further Minkowski sums will add more
zones to the zonohedron, and will maintain those two faces, though
moving them steadily farther apart. The faces will remain after the
zonohedron is complete, and the ith and jth zones will each contain
both of them.

2.7 Zonohedra as Convex Polytopes
Both geometric and algebraic arguments show that a zonohedron is
a convex polytope. Geometrically, the method of construction shows
that a zonohedron’s boundary consists of a finite number of line seg-
ments and parallelogram faces, both of which consist of convex combi-
nations of their vertices. Since there are finitely many edges and faces,
there are also finitely many vertices, which generate all the edges and
faces, not to mention the solid zonohedron itself.

Algebraically, Equation (2.11) can be rewritten in terms of the set
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of nodes:

Z(G) = hull(N (Z)). (2.17)

To see this result, express the zonotope in the form given in Equation
(2.11). Any point p in the zonotope can be then be expressed by a
sequence –1, –2, ..., –m of coe�cients in that equation, where each –i

is between 0 and 1. Formally,

p =
mÿ

i=1
–ivi (2.18)

= –1v1 + –2v2 + ... + –mvm. (2.19)

Note that this expression might not be unique—often many such se-
quences define the same point.

Without loss of generality, the vectors v1, v2, ..., vm can be re-
ordered if necessary so that

–1 Æ –2 Æ –3 Æ ... Æ –m. (2.20)

To show that Z is the convex hull of the nodes of Z, it is su�cient to
express p as a convex combination of a set of nodes. In other words,
write p as a linear combination of nodes, whose coe�cients are all
between 0 and 1, and all sum to 1. To write p in this form, rearrange
Equation (2.19):

p = –1

mÿ

i=1
vi + (–2 ≠ –1)

mÿ

i=2
vi + ...

... + (–3 ≠ –2)
mÿ

i=3
vi + ... + (–m ≠ –m≠1)

mÿ

i=m

vi (2.21)

=
mÿ

j=1

Q

a(–j ≠ –j≠1)
mÿ

i=j

vi

R

b , (2.22)

where –0 is set to 0. Each summation inside the parentheses in Equa-
tion (2.22) is a sum of generating vectors, so, by Equation (2.15), they
are all nodes. Furthermore, the inequalities in Equation (2.20) insure
that each coe�cient inside the parentheses is between 0 and 1. The
sum of all the coe�cients inside the parentheses is a telescoping series

–1 + –2 ≠ –1 + –3 ≠ –2 + ... + –m≠1 ≠ –m≠2 + –m ≠ –m≠1, (2.23)
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which sums to –m.
Equation (2.22) nearly achieves our goal of writing p as a sum of

nodes, with coe�cients between 0 and 1, that sum to 1. To take the
final step, use the fact that the zero vector 0 is always in the set of
nodes, and add a multiple of 0 to Equation (2.22):

p =
mÿ

j=1

Q

a(–j ≠ –j≠1)
mÿ

i=j

vi

R

b + (1 ≠ –m)0. (2.24)

This addition does not change the vector produced by the linear com-
bination of nodes, but does guarantee that its coe�cients sum to 1, as
needed. We have therefore succeeded in writing a point p as a convex
combination of nodes.

The nodes in Equation (2.22) are all sums of sequences of vectors
in G, where the sequences have di�erent lengths. What constitutes a
“sequence,” however, depends on how the vectors in G are ordered,
and the ordering used for Equation (2.22) was chosen to insure that
Equation (2.20) held. The –i’s in Equation (2.18) could be chosen to
induce any desired ordering, so the entire set of orderings, and thus
the entire set of nodes, is needed.

The constructions show that every vertex of a zonohedron is the
sum of a set of generating vectors, so every vertex is a node. Even
simple examples, however, like the zonogon in Figure 2.6 show that
not every node is a vertex—in fact, many nodes occur in the interior.

The fact that a zonohedron, or in fact a general zonotope, is the
convex hull of its finite set of nodes establishes that a zonotope is a
convex polytope. This result will allow us to reach conclusions about
possible coordinate representations of points in zonotopes, and, in later
chapters, those representations will imply that some colours can only
be produced in certain ways.

2.8 Coe�cient Sequences for Zonohedra
Equation (2.11) expresses a point p in a zonotope by a sequence

(–1, –2, ..., –m), (2.25)

where the –’s are the coe�cients in a linear combination of generating
vectors that produces p. As simple examples like Figure 2.6 show, that
sequence might not be unique. In fact, when there are more generators
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than dimensions, there is often a multitude of such sequences. A se-
quence could be used as a set of coordinates for a point in a zonotope.
This section shows that, under the assumption of general position, a
point on the boundary of a zonohedron has a unique coordinate se-
quence. The result is first shown for the zonohedron’s vertices, each of
which can be written, in just one way, as the sum of all the generating
vectors which lie on one side of a hyperplane through the origin. That
result is then used to derive similar uniqueness results for points on
edges or faces.

2.8.1 Vertices

Section 2.7 showed that a zonotope is a convex polytope and Section
1.3.4 explained that the vertices of a convex polytope are exposed
points: for each vertex v there exists a supporting hyperplane Hv such
that Hv intersects the polytope only at v; apart from that intersection,
the polytope lies completely on one side of Hv. This section will prove
from that description that each vertex of a zonotope is represented
by a unique coordinate sequence. The coordinate sequence contains
only 0s and 1s, so each vertex is the sum of a unique subset of the
generating vectors, consisting of those that are on one side of Hv,
after translating Hv to the origin.

The proof interprets a vertex as the solution to an optimization
problem that is studied in linear programming: find a point pmax on
a convex polytope at which a given linear functional takes on a maxi-
mum value. Section 1.2 characterized a linear functional as a stack of
parallel hyperplanes, each of which is the pre-image under that func-
tional of a certain real number. The functional values corresponding
to a hyperplane increase as the hyperplanes get further from the ori-
gin. Geometrically, then, pmax must lie on a supporting hyperplane;
all the hyperplanes on one side are of smaller value, and none of the
hyperplanes on the other side intersect the polytope.

In the case at hand, the polytope is a zonotope Z. Let us specify a
vertex v, and find its coordinate sequence. First, choose a supporting
hyperplane Hv. The hyperplane defines, up to a scalar factor, a func-
tional Fv; choose the scalar factor so that Fv(Hv) is positive. By the
argument in the previous paragraph, v is the unique solution to the
problem of maximizing Fv over Z.

Every point in Z has the form given by Equation (2.11), so we can
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write

v =
mÿ

i=1
–ivi, (2.26)

where the vi’s are the generating vectors for Z. To prove the unique-
ness of Equation (2.26), we will show that the maximizing interpre-
tation implies that each coe�cient –i must be 0 or 1, depending on
which side of Hv (when translated to the origin) the i

th generator is
on. Begin with –1, and assume, by way of contradiction, that –1 is
neither 0 nor 1. Calculate Fv(v1). We will look at all three possible
cases: Fv(v1) is positive, negative, or zero.

If Fv(v1) is positive, then construct the vector

w = v + (1 ≠ –1)v1 (2.27)

= v1 +
mÿ

i=2
–ivi. (2.28)

w is the same as v, except that the first coe�cient has been increased
to 1. Both vectors are in Z, but

Fv(w) = Fv(v) + (1 ≠ –1)Fv(v1) (2.29)
> Fv(v). (2.30)

Thus Fv takes on a higher value at w than at v, contradicting the
maximality of v. This contradiction can only be avoided if –1 is ac-
tually 1, which eliminates the second term in (2.29). Less formally,
when Fv(v1) is positive, then linearity implies that using v1 as much
as possible only increases Fv, so the coe�cient of v1 should be set to
its maximum, which is 1.

If Fv(v1) is negative, then construct the vector

w = v ≠ –1v1 (2.31)

=
mÿ

i=2
–ivi. (2.32)

w is the same as v, except that the first coe�cient has been decreased
to 0. Both vectors are in Z, but

Fv(w) = Fv(v) ≠ –1Fv(v1) (2.33)
> Fv(v). (2.34)
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Again, Fv takes on a higher value at w than at v, contradicting the
maximality of v. The contradiction is avoided if –1 is 0. In this case,
using more of v1 only decreases Fv, so the coe�cient of v1 should be
set to its minimum, which is 0.

The positive and negative cases require that the maximizing co-
e�cient –1 must be either 0 or 1; furthermore, the choice of 0 or 1
is unique. It will be shown that the third case, Fv(v1) = 0, cannot
occur, because it violates the assumption that Hv intersects Z only
at v. The reason is that Fv(v1) = 0 implies that

Fv(v + –1v1) = Fv(v), (2.35)

even when –1 is positive (but no greater than 1). v+–1v1 is contained
in the zonotope, which implies that v+–1v1 is also on the supporting
hyperplane Hv, whereas we had chosen Hv to intersect the zonotope
only at v. Therefore Fv(v1) is not zero, implying that –1 is uniquely
either 0 or 1.

Of course, the same argument could be repeated with –2, –3, and
so on, implying that each coe�cient –1 is uniquely either 0 or 1. Gen-
erators with coe�cient 0 can be disregarded, and the vertex v written
uniquely as the sum of the subset GÕ of generating vectors whose co-
e�cients are 1, as was to be shown.

This subset can be interpreted geometrically. Since Fv is positive
on each vector in GÕ, and negative on any vector outside GÕ, GÕ can
be seen as the set of generators that are on one side of the hyper-
plane given by ker Fv. This kernel, however, is just a translation of the
hyperplane Hv. Given a vertex v, then, and a hyperplane which inter-
sects the zonotope only at that vertex, just shift that hyperplane to
the origin. The vertex v is then the sum of all the generating vectors
which are on the same side of the shifted hyperplane as v.

A two-dimensional example will make the geometric interpretation
clear. Figure 2.16 shows a zonogon with five generators. A vertex
v has been chosen. In two dimensions, a hyperplane is just a line.
A supporting hyperplane has been drawn through v, that intersects
the zonogon only at v. A translated copy of that hyperplane has been
drawn through the origin. The three generators v1, v3, and v4 are
on the same side of the translated hyperplane as v. It can be seen
geometrically that v is the sum of these three vectors:

v = v1 + v3 + v4, (2.36)

because a path from the origin to v can be traced along the boundary,
and copies of those three vectors appear as boundary segments along
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Figure 2.16: A Vertex as the Sum of Generators on One Side of a
Hyperplane

that path. It can be seen from the figure that the supporting hyper-
plane is not unique. Any hyperplane that intersects the zonogon only
at v will, when translated to the origin, lie between v4 and v5, and
produce the same set of generators.

A corollary to this construction is that a zonotope is centrally sym-
metric: it has a unique center, and any point p on the zonotope has
an antipodal point pa, which is diametrically opposite p, across the
center. Algebraically, the center of the zonotope is given by

vc =
mÿ

1=1

1
2vi, (2.37)

the point whose coe�cients are all 1/2. Geometrically, the center is
halfway between the origin and the terminal point.

Suppose we have the vertex v, shown in Figure 2.17. A line from v
through vc will intersect the boundary at an antipodal vertex va, that
is diametrically opposite to v. It is not hard to see that va is the sum
of the generating vectors v2 and v5, which make up the complement
of the generating vectors that sum to v. A simple algebraic way to
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Figure 2.17: Centrally Symmetric Vertices on a Zonogon

write this relationship is

va =
mÿ

1=1
(1 ≠ –i)vi. (2.38)

Equation (2.38) actually gives the diametrically opposite point for any
point v in the zonogon, whether or not it is a vertex.

While this example has been in two dimensions, generalizations to
three or more dimensions are straightforward. Not only the proof of
unique coe�cient sequences for vertices, but also the algebraic devel-
opment of central symmetry, works in any dimension. In the three-
dimensional case of interest in this book, a zonotope is a zonohedron,
and hyperplanes are just planes in R3. To find a vertex, then, draw a
plane through the origin. All the generating vectors that are on one
side of the plane will sum to one vertex, and the vectors on the other
side will sum to the antipodal vertex. Furthermore, the corresponding
coordinate expressions for the vertices are unique. In later chapters,
some sets of colours will be shown to have a zonohedral form; this
section’s results will then imply that a colour represented by a vertex
can be produced in only one way from the colours used as generating
vectors.
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2.8.2 Edges and Faces
The previous section showed that each vertex of a zonotope has a
unique expression as a linear combination of the generating vectors.
This section proves similar results for edges and faces, except that
uniqueness is no longer automatic; rather, it now requires the gener-
ating vectors to satisfy some linear independence relationships. For-
tunately, the requirements are mild: as long as no two generators are
scalar multiples of each other, each point on an edge has a unique coef-
ficient sequence, and as long as no three generating vectors are linearly
dependent, each point on a face has a unique coe�cient sequence. For
zonohedra, both these conditions are satisfied when the generators are
in general position, which is the generic case. Geometrically, general
position implies that all a zonohedron’s faces are parallelograms, and
that each edge is a translated copy of a single generator (rather than
multiple generators laid end to end).

The result about edges will be proven first. Assume, for a given
zonohedron Z(G), that no two vectors in G are linearly dependent,
i.e. that no two vectors are scalar multiples of each other.. Let E be
an edge of Z, and let vE be the generator of which E is a copy. The
assumption that no two generators are linearly dependent implies that
vE is a unique, single vector. (The only other option is that E consists
of multiple generators laid end to end, but that configuration requires
two or more generators to be linearly dependent.)

As an edge, E is bounded by two vertices, w1 and w2. Reorder the
vertices if necessary so that

w1 + vE = w2. (2.39)

To show that any point wE on E has a unique coordinate sequence,
begin by choosing a supporting hyperplane HE that contains the edge
E , but that does not otherwise intersect Z; in particular, HE contains
no face of Z. The existence of such an HE follows from the fact that
Z is a convex polytope.

Translate HE to the origin, and consider its relationship to the
generating vectors. First, since E is a translated copy of vE , it follows
that vE is contained in the translated HE . Second, since w1 and w2
are bounding vertices, it follows from previous discussions that HE
corresponds to a linear functional fE that is maximized by w1 and w2.
The translated HE divides G into three subsets: G+ (the generators
on which FE is positive), G≠ (the generators on which FE is negative),
and vE (the single generator on which FE is zero).
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We can write w1 and w2 in terms of these subsets:

w1 =
ÿ

viœG+

vi, (2.40)

w2 =
ÿ

viœG+fivE

vi. (2.41)

Since w1 and w2 are vertices, these expressions are unique. Every
point wE on E can be written as

wE = –w1 + (1 ≠ –)w2, (2.42)

for some unique – between 0 and 1. Then, since w1 + vE = w2, we
can write

wE = w1 + –vE (2.43)

=
ÿ

viœG+

vi + –vE . (2.44)

Equation (2.44) provides one coe�cient sequence for wE ; unique-
ness follows from the maximizing behavior of FE . Since w1 and w2
both maximize the linear functional FE , therefore wE , which is a con-
vex combination of w1 and w2, also maximizes FE . From Equation
(2.44) we can write

FE (wE ) = FE

Q

a
ÿ

viœG+

vi

R

b + FE (–vE ). (2.45)

Eliminating any vector in G+, or reducing its coe�cient to less than
1, in the first argument on the right of Equation (2.45), would only
decrease the value of FE . Similarly, introducing any vector in G≠, or
increasing its coe�cient beyond 0, would only cause a decrease. There-
fore, all coe�cients for G+ must remain at 1, and all coe�cients for
G≠ must remain at 0. Increasing or decreasing – would not change
the value of FE , but would invalidate Equation (2.43), so – must also
stay the same. The expression in Equation (2.44) is therefore the only
one possible, so every point on the edge of a zonotope, under the as-
sumption that no two generators are linearly dependent, must have a
unique coe�cient sequence, as was to be shown.

Uniqueness will now be proven similarly for points on a zonotope’s
face, under the assumption that no three generating vectors are lin-
early dependent. The edge E is replaced with a face F , and the hy-
perplane HF makes full contact with that face, but with no other
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part of the zonotope. Again, translate HF to the origin. Define FF ,
G+, and G≠ similarly to the edge case. Instead of just containing one
generator vE , the translated hyperplane now contains two generators,
vF1 and vF2. Any other generator that might be contained in the
translated hyperplane would be a linear combination of vF1 and vF2,
which would violate the assumption; therefore vF1 and vF2 are the
only generators in the translated hyperplane.

Since the face F consists, after translation, of zonal combinations
of two vectors, it is a parallelogram with four vertices. One of the
vertices, which we’ll call w1, is an “initial” vertex, and the opposite
vertex, which we’ll call w2, is a “terminal” vertex. These two vertices
satisfy the relationship

w2 = w1 + vF1 + vF2. (2.46)

The remaining two vertices of the parallelogram are w1 + vF1 and
w1 + vF2. The linear independence of vF1 and vF2 imply that, for
any point wF on the face, there exist two unique constants, –1 and
–2, both between 0 and 1, such that

wF = w1 + –1vF1 + –2vF2. (2.47)

As before, the vertex w1 is a unique linear combination of generators,
whose indices are taken from some subset G+, so we have

wF =
ÿ

viœG+

vi + –1vF1 + –2vF2. (2.48)

Again, apply FF to both sides of Equation (2.48). Argue as before
that the coe�cients for generators in G+ and G≠ cannot be changed.
The two remaining coe�cients, –1 and –2, are unique because vF1
and vF2 are linearly independent; this reasoning is a two-dimensional
version of the reasoning after Equation (2.45), where there was only
coe�cient –, instead of two. Since all the coe�cients in Equation
(2.48) are unique, any point on the face of a zonotope, or in particular a
zonohedron, provided that no three generators are linearly dependent,
has a unique coe�cient sequence, as was to be shown.

A simple corollary of these two proofs can also be seen. The unique
coe�cient sequence for a point on the edge of a zonotope consists
entirely of zeros and ones, except for at most one generator. Similarly,
the unique coe�cient sequence for a point on the face of a zonotope
consists entirely of zeros and ones, except for at most two generators.
Both these corollaries, of course, make an appropriate general position
assumption.
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2.9 Cyclic Zonohedra

Cyclic zonohedra are non-negative zonohedra whose generators form
a minimal set for their convex cone. They occur several times in
colour science, and the cyclic property is vital to some results. This
section describes cyclic zonohedra, presents a convenient construction
for them, and shows that they possess some regularities that make
them easy to work with.

Formally, suppose we have a set G of m non-negative generating
vectors. They can be pictured as line segments emerging from the
origin, in the non-negative octant of R3. Each generating vector can
be extended to a semi-infinite ray, and the convex hull of those rays
is the convex cone, cone(G), of the generating set. Although the term
“cone” suggests a regular, usually circular, profile, a cone in this con-
text could have a very irregular profile; since there are only finitely
many generating rays, the profile must be polygonal.

Regardless of its profile, any finitely-generated convex cone still
has an inside, a surface, and an outside. Typically, one pictures a
cone’s generating rays as lying on its surface. Possibly, however, one
or more of the rays is inside the cone. In that case, any rays that are
inside are not needed to generate the cone. Geometrically, the inside
rays are convex combinations of the rays on the surface and so are
unnecessary; the generators as a whole, then, do not form a minimal
set for the cone.

While this discussion has been in three dimensions, Figure 2.18
shows that the issues can be expressed more clearly in two dimensions.
The left side of the figure shows five non-negative generators, their
extension to rays, and the convex cone that results. A simple way to
view the profile of the cone, and to determine whether any rays are
inside, is to slice it with the plane H given by x + y + z = 1. The
result appears on the right of the figure. Each generator produces one
point pi on the plane x+ y + z = 1. Denote the set of points pi by P.

In that plane, the convex hull, hull(P), of the pi’s is a polygon. It
is easy to see that a ray created from a generating vector is inside the
convex cone if and only the corresponding point is inside the polygon;
in the figure, for instance, the ray through v3 can be written as a con-
vex combination of the rays through the other four generators, and p3
can be written as a convex combination of the other four points. (An-
other interpretation is that a ray is inside the convex cone if and only
if the corresponding generator is a non-negative linear combination of
the other generators.) It is also easy to see that the choice of sec-
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Figure 2.18: Two-Dimensional Section of a Convex Cone

tional plane x + y + z = 1 is not very important: any plane that cuts
the x-, y-, and z-axes on their positive halves will capture the needed
convexity information. For simplicity, then, we will largely work in a
two-dimensional planar section.

The convex hull of P might also be the convex hull of a subset
of P. The smallest such subset is called the minimal set, and can be
shown to be unique. If the minimal set consists exactly of the points in
P, then the set of generating vectors, as well as the zonohedron they
generate, is said to be cyclic. To motivate this terminology, Figure
2.19 shows two possible configurations for P, each with six points. In
the example on the left, the points fall approximately on a hexagon,
and are a minimal set for their convex hull: if any point were removed,
then the resulting convex hull would be smaller. The lefthand example
is therefore cyclic, and the points can be naturally ordered in a cicle,
either clockwise or counterclockwise. In the example on the right, one
of the points falls inside the convex hull. Removing the inside point
would not a�ect the convex hull. Algebraically, the point on the inside
can be written as a convex combination of the other points. The set
of points on the right is not cyclic—no circular ordering is possible,
because it is unclear where the inside point would fit in the sequence.

An “inside” point does not have to be completely inside. Suppose
instead that it was located on an edge of a polygon in Figure 2.19,
between two vertices. Then the point would be a convex combination
of those vertices, so it would not be needed in the minimal set. By
our definition, such a set would not be called cyclic, even though there
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Figure 2.19: Examples of Cyclic and Non-Cyclic Sets

might be a clear circular ordering of the points. Another anomalous
case would occur when two generators were scalar multiples of each
other, so they produced the same point in H. Then either of the points
would trivially be a convex combination of the other point, so one of
them is not necessary; this case would also be considered not cyclic.
In light of these cases, it can be seen that a cyclic set of generators is
necessarily in general position: three linearly dependent vectors would
be coplanar, and their corresponding points in H would be collinear,
so the middle point would be not be needed. Similarly, if two vectors
were linearly dependent, then they would produce two copies of the
same point in H, only one of which would be needed for the minimal
set.

A cyclic zonohedron results from a cyclic set of generating vectors,
and has some distinctive structure. For instance, the fact that a cyclic
set of generators is in general position implies that each face of the
zonohedron is a parallelogram, and each edge is a translated copy of
exactly one generator.

More surprisingly, on the zonohedron itself, each generating vector
appears as an edge that starts at the origin. Figure 2.20 demonstrates
this fact by construction. Suppose that a generating vector of interest
produces the point p1 in H. Since the vectors are cyclic, their corre-
sponding points in H are a minimal set; therefore the convex hull of
points p2 through p6, that is, the set of all the points except p1, does
not contain p1. It can be seen that in such a case there exists a line L
in H that separates p1 from that convex hull.

H is a two-dimensional section of R3, like the configuration shown
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Figure 2.20: The Structure of a Cyclic Zonohedron at the Origin

in Figure 2.18. In that figure, the line L would appear on the triangular
intersection of x + y + z = 1 with the positive octant. It is then clear
that L could be extended to a plane PL that includes the origin. PL
is then a hyperplane in R3 that separates the first generating vector
v1 from the rest of the vectors. The previous results about coe�cient
sequences for vertices imply that the first v1 itself appears as a vertex.
By convexity, the zonohedron contains the line joining v1 to the origin,
which itself is always a vertex. Since the di�erence between the vertex
v1 and the vertex at the origin consists of a single vector, the vertices
must be adjacent, so the line joining them, which is identical with v1
seen as a line segment, must be an exterior edge.

By relabeling the generators, the argument above can be seen to
apply to any generator, so each generating vector similarly appears as
an exterior edge that starts at the origin, as was to be shown. Further-
more, since each edge is a translated copy of a generator, all the edges
at the origin must be generators, so we have a complete description
of the zonohedron’s structure at the origin. Since the zonohedron is
centrally symmetric, the structure at the terminal point is identical,
but reversed: a copy of each generating vector appears as an edge that
ends at the terminal point.

Similar constructions allow us to identify all the vertices of a cyclic
zonohedron, and write them in a convenient sequential form. Any
vertex is the sum of all the generators on one side of a hyperplane
in R3; equivalently, it is the sum of the vectors corresponding to all
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the points pi that appear on one side of a line L in H. Figure 2.21
shows some examples of these lines. Line 1 already appeared in Figure
2.20, and gives the vertex v1. Line 1-2 gives the vertex v1 + v2. These
two vertices are adjacent, and the edge between them is a translated
copy of v2. Continuing, Line 1-2-3 gives the vertex v1 + v2 + v3. This
vertex is adjacent to the vertex v1 + v2, and the edge between them is
a translated copy of v3. This construction can continue around the set
until all but one of the vectors are included; including the final vector
would result in the terminal point.

6

Line 1
Line 1-2

Line 1-2-3 1
p

2
p3

p

4
p

5
p

p

Figure 2.21: The Form of All Vertices of a Cyclic Zonohedron

Each vertex is the sum of a set of generating vectors whose indices
form a consecutive sequence. The construction could have proceeded
clockwise rather than counterclockwise, in which case v1 + v6, v1 +
v6 + v5, and so on, would have appeared as vertices. The set 1-6-
5 could also be interpreted as a consecutive sequence, if one allows
a modular wraparound, so that 1 is the next number after 6. The
starting point of the sequence is arbitrary. In general, any consecutive
modular sequence of up to m vectors, regardless of its starting vector,
sums to a vertex of a cyclic zonohedron, and all vertices have that
form.

The set of consecutive sequences, and thus the set of vertices of a
cyclic zonohedron, can be partitioned by the number of summands in
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2.9. Cyclic Zonohedra

the sequence. Geometrically and combinatorially, all vertices with the
same number of summands can be thought as appearing on one level.
The vertices adjacent to the origin are simply the generating vectors;
they form the first level of vertices and are “sums” of one generator.
The second level of vertices is above and adjacent to the first level, and
they consist of sums of two generators. These levels continue until the
terminal vertex, which is the sum of all the generators.

The following matrix scheme formalizes these calculations for the
zonohedron’s vertices. In the first row of the matrix, list the zero
vector m times. In the second row of the matrix, list the m generators,
numbered as a clockwise or counterclockwise sequence. The matrix’s
third row consists of sums of two vectors. Entry (3, j), for j = 1 . . . m,
is the sum of entry (2, j) and the vector immediately to the right of,
i.e. after, the vector in (2, j), in the numbering sequence chosen. The
adjacent vectors should be selected modularly: the first vector comes
immediately after the mth vector. The fourth row consists of sums of
three vectors. Entry (4, j), for j = 1 . . . m, is the sum of entry (3, j),
which is already the sum of two vectors, and the vector adjacent to
those two vectors, in the chosen order. Continue this process until
the (m + 1)st row, which will contain m copies of the sum of all the
vectors. Each row of the matrix contains all the vertices at one level.
Expression (2.49) shows the matrix when m is 4:

S

WWWU

0 0 0 0

v1 v2 v3 v4
v1 + v2 v2 + v3 v3 + v4 v4 + v1
v1 + v2 + v3 v2 + v3 + v4 v3 + v4 + v1 v4 + v1 + v2q4

i=1 vi
q4

i=1 vi
q4

i=1 vi
q4

i=1 vi

T

XXXV
(2.49)

Every entry in Expression (2.49) is a vertex of the zonohedron,
although with some duplication: the entries in the first row are all the
origin, and the entries in the last row are all the terminal vertex. In
all, there are m

2 ≠ m + 2 vertices. Each vertex is the sum of adjacent
vectors in the cyclic sequence. Two adjacent vectors are summed for
the third row, three for the fourth row, and so on.

Not only can the zonohedron’s vertex structure be inferred from
the matrix constructed, but so can its face structure. Two vertices
are adjacent, i.e. joined by an edge in the zonohedron, if and only if
their di�erence is a generating vector. Expression (2.50) draws lines
to represent edges between the adjacent vertices in Expression (2.49).
The first column has been repeated at the right side of the matrix,
in order to show all the adjacencies. Some edges appear twice in
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Expression (2.50). For example v2, in entry (2, 2) is joined to 0 by
two lines. Since all the entries in the first row represent the same
point, the origin, the two lines actually represent the same edge in
the zonohedron. Similar comments apply to the last row. Expression
(2.50) visually displays m(m ≠ 1) parallelograms, each of which is a
face of the cyclic zonohedron.

0 0 0 0

v1 v2 v3 v4 v1

v1 + v2 v2 + v3 v3 + v4 v4 + v1 v1 + v2

v1 + v2 + v3 v2 + v3 + v4 v3 + v4 + v1 v4 + v1 + v2 v1 + v2 + v3

q4
i=1 vi

q4
i=1 vi

q4
i=1 vi

q4
i=1 vi

(2.50)

Another interesting feature of a cyclic zonohedron is that each zone
contains both the origin and the terminal point. To see this result,
assume we want to find the i

th zone. Since a copy of vi emerges from
the origin, and thus contains it, the two parallelogram faces on either
side of that copy also contain the origin, and therefore the zone as a
whole contains the origin. A similar argument applies to the terminal
point, which is shaped like the origin, but after a reflection through
the zonohedron’s center. Note that a non-cyclic zonohedron, such as
the one shown in Figure 2.14, has zones, such as the fourth one, that
do not contain the origin.

In the context of colour science, later chapters will show that the
set of all surface colours, when viewed under a given illuminant, form a
cyclic zonohedron. Di�erent illuminants will lead to di�erent zonohe-
dra, but all such zonohedra are cyclic and we will see that they share
a common structure at the origin.
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2.10. Chapter Summary

2.10 Chapter Summary
This chapter has presented two important constructions, Minkowski
sums and zonohedra (more generally, zonotopes), and derived some
useful properties about them. This summary lists the definitions and
results.

Definition of the Minkowski Sum. The Minkowski sum, denoted
ü, of two non-empty subsets, A and B, of a vector space Rn, is defined
as

A ü B =
)

vA + vB
--vA œ A and vB œ B

*
. (2.51)

Properties of the Minkowski Sum:

1. The Minkowski sum of an arbitrary number of summands is well-
defined, and is independent of the order of those summands.

2. The Minkowski sum of an arbitrary number of convex sets is
again a convex set.

Definitions for Zonotopes and Zonohedra:

1. Suppose that we have a set of vectors G = {v1, v2, ..., vm}, in
Rn. The zonotope Z generated by G is the Minkowski sum of the
line segments corresponding to those vectors:

Z(G) = v1 ü v2 ü ... ü vm. (2.52)

Equivalently, Z(G) can be written as

Z(G) =
I

mÿ

i=1
–ivi

-----0 Æ –i Æ 1 ’i

J
. (2.53)

If n = 2, then Z is a zonogon. If n = 3, then Z is a zonohedron.
2. A zonotope is non-negative if there exists a basis of Rn in which

all the co-ordinates, of every vector in G, are non-negative. A
non-negative zonotope has a terminal point, given by

v1 + v2 + ... + vm, (2.54)

and a center, given by
mÿ

1=1

1
2vi. (2.55)
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3. Suppose that v is one of the generators for a zonohedron Z.
Then the zone of Z corresponding to v consists of all the faces
of Z for which one edge is a translated copy of v.

4. A set of vectors G in Rn is in general position if every subset of
n vectors in G is linearly independent.

5. A set of non-negative vectors G in R3 is cyclic if no vector in
G is contained within the convex cone of the other vectors. A
zonohedron Z(G) that results from a cyclic generating set is also
called cyclic.

Properties of Zonotopes and Zonohedra:

1. A zonotope is a convex polytope, with a polytope’s usual struc-
ture of vertices, edges, k-dimensional faces, and so on.

2. If a zonohedron’s generators are in general position, then
(a) Each edge of the zonohedron is a translated copy of one and

only one of the generators, and
(b) Each face of the zonohedron is a parallelogram; further-

more, each edge of any such parallelogram is a translated
copy of one of the generators.

3. The converse to Result 2 holds: if each edge of a zonohedron is a
translated copy of a generator, and each face of the zonohedron is
a parallelogram, then the zonohedron’s generators are in general
position.

4. A zonotope is centrally symmetric: the points
mÿ

1=1
–ivi and

mÿ

1=1
(1 ≠ –i)vi (2.56)

on the zonotope are the endpoints of a line segment whose
halfway mark is the zonotope’s center.

5. If v is a vertex of a zonotope, then there is a unique sequence
of –i’s in Equation (2.53), which produce v. Each –i in that se-
quence is either a 0 or a 1. Furthermore, a hyperplane H through
the origin can be found, such that any generator with coe�cient
1 is on one side of H, and any generator with coe�cient 0 is on
the other side.

6. The converse to Result 5 holds. Suppose the hyperplane H
through the origin contains no vector in the generating set G.
Then the sum of all the generators on either side of H is a ver-
tex of Z(G).
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7. Suppose no two generating vectors are linearly dependent, and
that v is on an edge of the zonotope produced by the generating
vectors. Then there is a unique sequence of –i’s in Equation
(2.53), which produce v. At most one –i is strictly between 0
and 1; every other coe�cient is either 0 or 1.

8. Suppose the generating vectors for a zonohedron in R3 are in
general position (i.e no subset of three is linearly dependent),
and that v is on the boundary of the zonohedron produced by
the generating vectors. Then there is a unique sequence of –i’s in
Equation (2.53), which produce v. At most two –i’s are strictly
between 0 and 1; every other coe�cient is either 0 or 1.

9. Suppose a zonohedron is cyclic. Then each generating vector
occurs as an edge that starts at the origin, and these are the
only edges that emerge from the origin.

10. Similarly, each generating vector occurs as an edge that ends at
the terminal point, and these are the only edges that end at the
terminal point.

11. Each zone of a cyclic zonohedron contains both the origin and
the terminal point.

12. The vertices of a cyclic zonohedron have a special form. Let the
generating vectors be numbered cyclically (either clockwise or
counterclockwise) from 1 to m. Then a sum of generating vectors
is a vertex if and only if the indices of those generating vectors
form a consecutive sequence. This sequence can be modular;
for instance, {m ≠ 1, m, 1, 2} would be considered a consecutive
sequence.

13. The matrix pattern in Expression (2.50), when generalized to
m entries rather than just four, gives the complete structure of
vertices, edges, and faces for a cyclic zonohedron.
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Chapter 3

Physical Factors in
Colour Matching

3.1 Introduction

Both physical and perceptual factors contribute to human colour sen-
sations. The perceptual factors result from the human visual system
(HVS), including the eyes, the brain, and the optic nerve, and possi-
bly involve psychological properties too. The physical factors behind
colour, on the other hand, are independent of a human subject. They
include the light sources which make vision possible, and the optical
properties of perceived objects. In both theory and practice, these two
factors are distinct. This chapter deals with physical factors; the next
chapter deals with perceptual factors.

In an everyday viewing situation, a human’s field of view consists
of a scene with many objects, at various di�erent locations. Some dis-
tribution of light enters the eyes from each direction. The distribution
of light from a particular direction will be referred to as a colour stim-
ulus or visual stimulus. A visual scene contains a multitude of colour
stimuli, each of which, when interpreted by the human visual system,
produces a colour sensation. Equivalently, a scene is a set of colour
sensations, where each direction provides one stimulus.

A basic question is how these stimuli relate to the colours they
produce. Colour science approaches this question by starting with
simple cases, and moving to progressively more complicated cases—
we will see, however, that even uncomplicated cases require elaborate
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analysis. In the simplest case, a viewer sees only a single stimulus,
from a uniform patch of colour, against a “‘black” background, where
there is no light at all. In such experiments, observers can assign
a hue (red, yellow, green, etc.) and a saturation (dull, vivid, etc.)
to a stimulus. Even the hues, though, are limited: for example, no
browns or greys can be produced. Furthermore, since the eye adapts
to the ambient illumination level, one cannot usually say whether the
stimulus is bright or dim.

The simplest case after an isolated stimulus—and the case of in-
terest for this book—consists of two uniform patches of colour, viewed
against a black background. The patches appear side by side. Typ-
ically they are both semicircles that together form a complete circle,
subtending about 2¶ of the field of view, about the same angle sub-
tended by a thumb held out at arm’s length. The two colour patches
can now be compared visually. In some cases, the colours look iden-
tical, or match, even though the two stimuli are physically di�erent.
Viewers in these colour-matching experiment adjust one of the stimuli
until the two colours agree. By systematically varying the stimuli, and
testing many human subjects, a substantial body of colour-matching
data has been accumulated, which was codified in the 1931 Standard
Observer, by the Commission Internationale de l’Éclairage (CIE). De-
spite their simplicity, colour-matching experiments lead to a rich vein
of perceptual and geometric analysis, which this book works out in de-
tail. Colour matching is basic to many important, and more advanced,
topics in colour science, which this book will not treat, but for which
it will lay a solid foundation.

This chapter begins the analysis of colour matching by examining
colour stimuli: the physical light that enters the eye and produces a
colour perception. While some colour stimuli travel directly from a
physical light source to a perceiving eye, a more important case oc-
curs when a stimulus results from light that leaves a source, and then
reflects o� an intermediate object, before finally reaching a human
perceiver. The elements of this case are handled separately. First,
light is considered solely as a radiometric power density over the vis-
ible spectrum. The shape of a density, independent of its magnitude,
is described by an illuminant. An object’s reflectance properties are
given by its reflectance spectrum, which is a function that takes on
values between 0 and 100% over the visible spectrum, and describes
how much light of each wavelength is reflected. Radiometric densi-
ties, illuminants, and reflectance spectra all have natural vector space
structures, which this chapter formalizes. Later chapters will find
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transformations from these physical vector spaces to perceptual and
sensor vector spaces. The images of the transformations will lead to ge-
ometric constructions, including zonohedra, in the destination spaces.

3.2 Colour Stimuli
3.2.1 Radiometric Functions
The human visual system responds to light, which is electromag-
netic radiation in the visible spectrum, where wavelengths are between
about 400 and 700 nm; a visual or colour stimulus consists of light (pro-
vided its composition is constant for some reasonable time period) that
reaches a human eye. A colour stimulus can be adequately described
for colour science by the amount of power it contains at a limited set
of wavelengths ⁄, or in a set of narrow wavelength bands. The unit
of power is the Watt (W), so a colour stimulus will be modeled as a
function that assigns a certain number of Watts to each wavelength,
or wavelength band, in the visible spectrum. Such a function is called
a spectral power density (SPD). (Technically, the power of a stimulus
in a certain wavelength band is given by integrating the SPD over
that band, and a stimulus is a measure, in the mathematical sense of
measure theory. For our purposes, however, the common conception
of an SPD as a function will su�ce.) Figure 3.1 graphs an exam-
ple of a colour stimulus given by an SPD. The horizontal axis is the
wavelength, and the vertical axis is power.

In practical situations, the power or intensity of a stimulus is con-
sidered not just on its own, but in context, and the units of the vertical
axis in Figure 3.1 change accordingly, although the change is typically
unstated. An SPD, for instance, might be impinging on a piece of
paper. Since the SPD delivers some amount of power to each area of
the paper, natural units are Watts per square meter (W/m2). On the
other hand, an SPD might occur as the output of a light bulb, which
is modeled as a point source. Then a solid angle centered at the bulb
contains a certain amount of light, so natural units are Watts per stera-
dian (W/sr). In many contexts, a stimulus has multiple simultaneous
interpretations. For instance, a light bulb emits an SPD, which then
illuminates a piece of paper. Even though they have di�erent units,
the emitted and the illuminating SPD have the same shape. Rather
than make multiple SPD graphs with di�erent units, only one graph is
made, with no units given. Radiometry deals with the interaction of
SPDs and objects, and the appropriate units, so the terms radiometric
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Figure 3.1: An Example of a Colour Stimulus, Graphed as an SPD

⁄(nm) SPD(⁄) ⁄(nm) SPD(⁄)
400 4.6098 560 7.6684
410 5.8696 570 7.4499
420 7.1440 580 7.1222
430 8.1854 590 6.7872
440 8.8481 600 6.5323
450 9.0302 610 6.4376
460 8.9646 620 6.4158
470 9.0156 630 6.4085
480 9.0229 640 6.3939
490 8.7898 650 6.4231
500 8.1636 660 6.4012
510 7.4499 670 6.2847
520 7.0566 680 6.1172
530 7.1367 690 5.8405
540 7.4353 700 5.5565
550 7.6611

Table 3.1: Tabulated SPD Values for Figure 3.1
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function, SPD, colour stimulus, and visual stimulus (or just stimulus)
will be used as synonyms.

Though they are often drawn as continuous functions, colour stim-
uli are typically given as discrete tabulations. Table 3.1, for example
contains the same data as Figure 3.1, but listed at 31 wavelengths,
running from 400 to 700 nm in intervals of 10 nm. A 10 nm resolution
is fine enough to account for most colour phenomena, so this book will
treat colour stimuli as discrete functions over those 31 wavelengths.
Adjustments can easily be made for finer or coarser resolutions.

3.2.2 Colour Stimuli as a Subset of a Vector Space
Because of the relatively low wavelength resolution needed, a vector
space formulation of colour stimuli is both su�cient for colour science
and computationally convenient. Throughout this book, therefore, the
31 power levels for a colour stimulus will be interpreted as the entries of
a 31-dimensional vector. Each colour stimulus can equivalently be seen
as a non-negative discrete function of the visible spectrum, over the
wavelengths 400 nm, 410 nm, ..., 700 nm. The set S of colour stimuli
can be viewed as a subset of the 31-dimensional real vector space S of
discrete functions which take on arbitrary values at those wavelengths.
This underlying vector space structure will be used extensively later,
for further definitions and for geometric constructions.

Addition and scalar multiplication of the radiometric functions in S
are consistent with the vector space operations in S, and have natural
physical interpretations. Addition corresponds to superposition. Sup-
pose for instance that a piece of paper is illuminated simultaneously
by two SPDs. Then the total illumination is a third SPD, which is the
mathematical sum of the first two; physically, two stimuli have been
superposed to produce a new stimulus. Scalar multiplying an SPD
by a constant k corresponds to changing the SPD’s absolute power
levels while retaining its relative power levels; the graph will change
its size, but not its shape. An obvious example is a dimmer switch for
a light bulb, which increases or decreases brightness without changing
the relative power outputs at di�erent wavelengths.

The set S of SPDs is only a subset, and not a subspace, of the vector
space S, because functions in S can take on negative values. A vector in
S is a physically possible SPD if and only if all its coordinates—which
represent physical power levels—are non-negative. While a vector with
some negative coordinates has no physical meaning, it is still useful
mathematically, and we will later define some linear transformations
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on S, with the understanding that they are physically meaningful only
when restricted to S. Working with the larger space S allows us to
apply the machinery of linear algebra, which will later prove essential
for derivations.

While the coordinates for a vector space are arbitrary, an obvious
choice of coordinates for S is the power levels at the 31 wavelengths
400 nm, 410 nm, ..., 700 nm. The corresponding basis vector for each
coordinate is an indicator function, which take on the value 1 at that
wavelength, and the value 0 everywhere else. Formally, define

‡400(⁄) =

I
1, if ⁄ = 400,
0, otherwise, (3.1)

to be the indicator function for 400 nm, and define other basis vectors
similarly. The units of ‡400 are chosen appropriately for the context.
Such indicator functions are called monochromatic. As a whole, the
set of indicator functions serve as a basis for S.

The total power of a radiometric function is an important physical
concept, with a natural interpretation as a linear functional P on the
vector space S. Define P first on basis vectors and then extend it to
all vectors by linearity:

P (‡⁄) = 1, (3.2)

where ⁄ is any of the 31 basis wavelengths. The linearity of P is
actually a physical statement, rather than a mathematical statement,
relying on the fact that SPDs can be superposed without interacting.
Later, another important functional on S, the luminance functional
Y , will be seen to be perceptual rather than physical.

3.3 Illuminants and Light Sources
Some kind of light source or illumination is needed to produce a colour
stimulus. A light source can produce a stimulus either directly, for
example when a viewer looks right at a lit light bulb, or indirectly, for
example after the light from a source reflects o� some physical object.
In either case, the SPD of the illuminating light a�ects the SPD of
the stimulus reaching a human observer, and thus a�ects the resulting
colour perception. This section discusses illuminants and light sources,
two colour science terms that are relevant to illumination.

In typical everyday viewing, a light source or sources illuminate a
scene containing multiple objects. Suppose for simplicity that there is
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a single light source, or, if there are multiple light sources, then they
all have SPDs of the same shape. Obvious examples are an outdoor
scene which is illuminated solely by the sun, or an indoors room that
is lit by a multitude of identical fluorescent tubes. In either of these
arrangements, the intensity of the lighting will vary greatly at di�erent
points and in di�erent directions, due to the spreading of the light as
it leaves the source, superposition of light from multiple sources, and
shadows cast by some objects on other objects. In addition, a strongly
directional source, such as the sun on a clear day, sheds much more
light on the parts of objects that are facing the sun, and much less on
the parts that are turned away from the sun.

In this example, the SPDs of the sunlight that reaches di�erent
parts of the scene vary greatly in intensity, but their shapes, that is,
the relative power at various wavelengths, would not vary much. In a
distinction that is not always observed, colour science applies the term
illuminant to the relative SPD of illuminating light and the term light
source to a physical object or phenomenon that produces that light.
Any source, regardless of its intensity, whose SPD has the shape of a
given illuminant, is said to be consistent with that illuminant. Two
sources, such as a 100 W and a 200 W incandescent bulb, can thus have
di�erent magnitudes, yet, since their SPDs have the same shape, be
consistent with the same illuminant. Another common example occurs
as emitted light gets progressively farther from a point source such as
a candle flame: the light’s power decreases as the inverse square of the
distance from the flame, but its SPD keeps the same shape.

Over the years, a series of standard illuminants has been defined.
Illuminant A, shown in Figure 3.2 with two other illuminants, models
light from incandescent sources. Illuminant C is an average of indi-
rect daylight. Illuminant E has equal power at every wavelength. The
vertical units in Figure 3.2 are arbitrary: they could be multiplied by
any scalar constant without changing the illuminant. As with SPDs
themselves, practical experience has shown that a 10 nm resolution
is adequate to model illuminants for colour science. Thus an illumi-
nant I will be treated as a 31-dimensional vector, over the same 31
wavelengths used previously. More precisely, an illuminant is an equiv-
alence class of 31-dimensional vectors that are scalar multiples of one
another, and which thus produce the same shape when graphed; this
level of precision, however, is usually not needed. As 31-dimensional
vectors, illuminants can be seen as elements of S. Since an illuminant’s
power is non-negative at any wavelength, illuminants can also be writ-
ten as elements of the set S of physically possible SPDs, and inherit
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Figure 3.2: Some Standard Illuminants

the same natural vector space operations.
At various points in this book, an illuminant will be required to be

positive, meaning that it has positive power at every wavelength; its
graph over the visible spectrum never takes on the value 0. This mainly
technical condition avoids degenerate cases. In practice, positiveness
is the norm, because most light sources, especially natural ones, do
have some power at every wavelength. Exceptions occur of course in
artificial situations, such as a monochromator that outputs light of
a very narrow bandwidth. Geometric constructions might also use
theoretical illuminants given by monochromatic SPDs.

3.4 Reflectance Spectra
While some colour stimuli reach the eye when humans view a light
source directly, for example by looking at the sun or a burning light
bulb, stimuli more commonly result when lighting interacts with the
objects in a scene before arriving at a human eye. Often, in fact, the
light source is not even within the field of view. The most frequent
form of interaction is Lambertian reflection, also called matte or di�use
reflection, which works on the various wavelengths independently. A
Lambertian object absorbs a certain percentage of the incoming light
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at a particular wavelength, and reflects the rest in a Lambertian distri-
bution: the amount reflected in a particular direction is not uniform,
but is rather proportional to the cosine of that direction’s angle from
the normal. This section derives an expression for Lambertian re-
flection, and formulates mathematically how it modifies an incoming
SPD, that is consistent with a certain illuminant, into another SPD
that serves as a colour stimulus for a human viewer.

Physical objects, of course, can modify an SPD in many other ways
than Lambertian reflection. For example, stained glass transmits some
of an SPD and blocks the rest. A diamond or prism can separate one
SPD into multiple SPDs. Oil films and di�raction gratings similarly
decompose an SPD, weakening some wavelengths and strengthening
others through interference. While this plethora of possible interac-
tions has been thoroughly investigated, matte reflection is typical of
everyday viewing, so this book will be largely restricted to this case.
The term physical object should also be understand in a broad sense
to encompass any material or matter with a surface that reflects light.
A field of grass, for instance, would be an object in this context.

3.4.1 Lambertian Reflection
A surface is said to exhibit Lambertian, also called matte or di�use,
reflection, if it is opaque, shows no specular behavior, and reflects light
in accordance with the Lambertian distribution. An opaque surface
or material transmits no light; all incoming light is either reflected or
absorbed. A purely specular surface reflects any incoming ray as a
single outgoing ray; the two rays make equal angles with the surface
normal, with which they are also coplanar. In di�use reflection, any
impinging ray, regardless of the incoming angle, exits the surface in all
directions simultaneously, and the power in any direction is propor-
tional to the cosine of that direction’s angle from the normal. Such
a power distribution is called Lambertian, after Johann Lambert, who
established it in 1762. This section derives the form of the Lambertian
distribution.

Surprisingly, the derivation relies only on common experience,
rather than specialized measuring equipment. Suppose a viewer ob-
serves a wall that is covered with a coat of some matte paint. A spot
on the wall can be viewed from multiple directions. For instance, one
could view the spot along the surface normal, or at some angle ◊ o�
the normal. The wall is illuminated by some incoming light, likely
from a variety of directions, and our eyes detect whatever part of that
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light reflects o� the surface in the direction in which we are looking.
Common experience tells us that the paint colour is constant, and
does not appear any brighter or dimmer, regardless of the viewing
angle. From this simple observation we will derive the Lambertian
distribution.

Suppose the spot is viewed along the normal. To isolate the SPDs
that travel into the eye along the normal, place a thin drinking straw,
of radius Á, at the eye, and align it along the normal (see Figure 3.3).
Then only the exiting rays that are parallel to the normal will reach
the eye. All such rays exit the wall from a circle of radius Á, centered
on the spot being viewed. The area of this circle is fiÁ

2, so the total
power of the SPDs traveling through the straw is some power factor p

times fiÁ

2.
Now view the same spot through the straw at some angle ◊ o� the

normal. Then the rays that are perceived through the straw all pass
through the circular cross-section of the straw perpendicularly; they
exit the wall from an ellipse, whose semi-axes are Á and Á/ cos ◊. The
area of the ellipse is (fi/ cos ◊)Á2, which is considerably larger than
the area of the circle in the normal direction. Apart from comparing
the area, the total power in the two directions can also be compared.
In general, the total power through a cross-section of the straw in
direction ◊ is some power flux f(◊) across the originating area of the
wall, times that area:

f(◊)(fi/ cos ◊)Á2. (3.3)

To determine f(◊), consider the common observation that the wall
has the same colour, and “constant brightness,” no matter what di-
rection it is viewed from. The total power of the SPDs reaching the
eye from any direction must therefore be the same. Therefore

f(◊)(fi/ cos ◊)Á2 = pfiÁ

2, (3.4)

and so

f(◊) = p cos ◊. (3.5)

◊ = 0 along the normal, so we get p = f(0), implying

f(◊) = f(0) cos ◊. (3.6)

Equation (3.6) states, counterintuitively, that the flux exiting the
surface at an angle ◊ o� the normal is less than the flux exiting along

68



3.4. Reflectance Spectra

Surface

Reflected 

Rays

Straw Along Non-Normal

/cos

St
ra

w
 A

lo
ng

 N
or

m
al

Reflected 
Rays

Surface

Figure 3.3: Reflected Rays in Di�erent Directions

the normal, by a factor of cos ◊. The di�erence can be significant:
almost no power exits in directions that are nearly parallel to the sur-
face. Figure 3.4 shows the relative amount of power flux in one plane
through the normal. The length of the arrow in the direction given by
the angle ◊ from the normal is proportional to the flux that exits in
that direction. From Equation (3.6), it can be calculated that the tips
of the arrows lie on a circle that is tangent to the surface. This circle
just gives the results for one plane; to be extended to three-dimensional
space, rotate the circle around the normal to make a sphere. In ra-
diometry, the definition of radiance, referring to the light emitted by
a surface such as a computer monitor, includes the factor cos ◊; our
derivations motivate this often unexplained factor.

The physical mechanism behind the Lambertian distribution re-
quires another distinction, between first-surface reflectance and bulk
reflectance. In first-surface reflectance, a ray reflects o� the surface of
an object without entering the object. In bulk reflectance, a ray enters
the object before it is reflected. Once inside the object, it interacts
with a variety of atoms or molecules, and can be scattered in many
directions. The various photons of the ray take randomly determined
paths, that can be wildly di�erent. Some paths will cause photons to
exit the object through the surface. The exiting photons can be trav-
eling in many di�erent directions, with no relation to their incoming
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Surface

Reflected 
Rays

Figure 3.4: Lambertian Reflectance Distribution in a Plane Containing
the Normal

direction. The observed Lambertian exiting distribution likely has a
statistical explanation, but the details seem not to be well understood.

In practice, many surfaces that are mostly matte exhibit a slight
gloss component, in which light that arrives at a certain angle to the
normal, such as 30¶, is reflected specularly, but light at any other angle
is reflected di�usely. Gloss causes a highlight, sometimes sharp and
sometimes blurry, that reflects the light source and moves on the sur-
face as the viewer changes position. Both matte and gloss components
can be encompassed in a bi-directional reflectance distribution function
(BRDF). Suppose we fix an incoming direction and an outgoing direc-
tion, and shine an SPD towards the surface along the incoming direc-
tion. Then some percentage (perhaps 0) of the incoming power will be
reflected in the outgoing direction. The BRDF gives that percentage,
for every pair of incoming and outgoing directions. While they are
the most comprehensive description of surface reflections, BRDFs are
di�cult to measure and cumbersome to calculate with. Though com-
prehensive, they are rarely necessary, because the gloss component of
most surfaces is often small enough to be neglected.

This book restricts itself to opaque objects whose reflectance is
solely di�use. Gloss, transparency, iridescence, fluorescence, and so
on, will not be treated. Though some interesting phenomena are elim-
inated, the case that is treated is in some sense the norm. A proto-
typical example of di�use reflectance is acrylic paint, for either artists
or housepainters, with a matte finish; these paints alone fill out the
universe of object colours fairly well.
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3.4.2 Absorption and Reflectance
While a matte object reflects some incoming light di�usely, it typically
also absorbs some incoming light, and only reflects the non-absorbed
part. After being modified by absorption and reflectance, the SPD of
the reflected light di�ers from the SPD of the illuminating light. For
a person viewing an object, the reflected SPD is the colour stimulus
associated with that object.

Absorption and reflectance are physical properties of a material,
and, like colour stimuli, vary with wavelength. A material’s reflectance
spectrum gives the percentage of light that a material reflects, as a
function of wavelength. Figure 3.5 shows such a spectrum for chrome-
oxide green, an artist’s pigment. The horizontal axis indicates wave-
lengths while the vertical axis indicates the percentage of light that
is reflected. This material, for example, reflects 18 percent of incom-
ing light of wavelength 500 nm, and 22 percent of incoming light of
wavelength 700 nm. The reflectance percentage must, of course, be
between 0 and 100. For an opaque matte material with no gloss com-
ponent, any light that is not reflected is presumed to be absorbed, so
the absorption percentage is just 100 minus the reflection percentage.
A reflectance spectrum therefore fully describes how light interacts
with a particular material.

Like an SPD, a reflectance spectrum can equally well be presented
as a table. Also like an SPD, 31 wavelengths at a spacing of 10 nm
has been found to be an adequate discretization for colour science.
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As before, we can construct a vector space, which we will call R, of
all the functions at the 31 wavelengths, with no restrictions on those
functions’ values. The reflectance spectra make up a subset R of R,
where R consists of all functions with values between 0 and 100%.
Equivalently, R consists of all functions with values between 0 and
1. A material’s reflectance spectrum will be typically denoted as a
function fl(⁄), where ⁄ represents wavelength.

The set of reflectance functions has two natural limits, described
as ideal black and ideal white. An ideal black reflectance function
reflects 0% of the incoming light at every wavelength, while ideal white
reflects 100%. Ideal black would be the darkest surface that could
possibly exist, while an ideal white surface, also called an ideal di�use
reflector would be the brightest. These two extremes have been closely
approximated in practice, but not quite attained. Nevertheless, they
are useful for theoretical and mathematical analysis.

The vector space R has a natural basis, analogous to the monochro-
matic basis for S. The maximal monochromatic reflectance (MMR)
spectrum at wavelength ⁄, denoted fl⁄, is defined to take on the value
100% at ⁄, and the value 0 elsewhere. For example, the maximal
monochromatic spectrum at 600 nm is given by

fl600(⁄) =

I
1, if ⁄ = 600,
0, otherwise. (3.7)

Physically, such a material would reflect light only at the wavelength
600 nm (or at the wavelength band containing 600 nm), and absorb
light of any other wavelength. We will use M to denote the set of
the 31 MMR spectra, which form a vector space basis for R. Unlike
monochromatic SPDs, which are easily produced by a monochromator
or lasers, no materials with MMR spectra are currently known to exist.
Any one that did exist would be very dark, because it would only reflect
a small portion (1/31st) of the incoming light.

Since reflectance produces a modified SPD from an incoming SPD,
a spectrum fl can also be seen as a transformation from the vector space
S to itself. No confusion will result if fl denotes both the spectrum and
the transformation. Of course, this transformation is physically mean-
ingful only when restricted to the set S of SPDs, which fl preserves.
It is easy to see that fl is a diagonal linear operator. The application
of fl to an incoming SPD ‡ can be written in matrix form:
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fl(‡) =

S

WWU

fl(400) 0 . . . 0 0
0 fl(410) . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . fl(690) 0
0 0 . . . 0 fl(700)

T

XXV

S

WWU

‡(400)
‡(410)

. . .
‡(690)
‡(700)

T

XXV (3.8)

=

S

WWU

fl(400)‡(400)
fl(410)‡(410)

. . .
fl(690)‡(690)
fl(700)‡(700)

T

XXV . (3.9)

The last line gives the power levels, at each wavelength, of the colour
stimulus resulting from an object of reflectance spectrum fl, when il-
luminated by an SPD ‡. The expression shows that it is produced by
element-wise multiplication of fl and ‡’s vector representations in R
and S.

3.5 Chapter Summary
This chapter has formalized mathematically the physical aspects of
colour that are needed for analyzing colour matches. The main objects
introduced were colour stimuli (or equivalently, radiometric functions,
or SPDs), illuminants, and reflectance spectra. All these objects were
cast as elements of appropriate vector spaces. To define any of these
objects with enough accuracy for colour science, it is su�cient to write
them as discrete functions over the set of 31 wavelengths, obtained by
going from 400 nm to 700 nm (the boundaries of the visible spectrum)
in steps of 10 nm.

More formally, the following terms were defined:

1. The 31-dimensional real vector space S of power level functions
on the 31 wavelengths,

2. The monochromatic SPDs ‡⁄, which take on the value 1 at wave-
length ⁄ and the value 0 elsewhere, form a basis for S,

3. The set S of colour stimuli. S is the subset, though not the sub-
space, of S that consists of all non-negative functions on the 31
wavelengths. Physically, the non-negative functions correspond
to SPDs, which are emitted by light sources and modified by ma-
terial objects. An SPD that enters an observer’s eye is thought of
as a colour stimulus, because it can produce a colour sensation,

4. An SPD is said to be positive if it takes on only positive values,
and no negative or zero values, over the entire visible spectrum,
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5. An illuminant I is a relative SPD; it defines the shape of an SPD,
but not its magnitude. Any SPD sharing that shape is said to
be consistent with the illuminant. An illuminant could also be
thought of as an equivalence class of SPDs, where two SPDs are
equivalent if they are multiples of each other,

6. The 31-dimensional real vector space R of reflectance functions
on the 31 wavelengths,

7. The set M of 31 maximal monochromatic reflectance (MMR)
spectra fl⁄, which take on the value 100% at wavelength ⁄ and
the value 0 elsewhere; they form a basis for R,

8. The set R of reflectance spectra. R is the subset, though not
the subspace, of R that consists of all functions on the 31 wave-
lengths that take on values between 0 and 100%. Each element fl

of R can also be seen as a diagonal linear operator on S. Mathe-
matically, a material with reflectance spectrum fl will modify an
SPD that strikes it, in accordance with this operator. Physically,
the material absorbs some percentage of each wavelength of the
incoming SPD and di�usely reflects the remaining percentage.
The materials of interest for this book are assumed to be opaque
and to interact with light only through absorption and di�use
reflectance.
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cube, 10, 13, 101, 103, 125,

188
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123, 127, 139, 145,
147, 149, 154, 155,
160, 165, 167, 172,
210

cyclic zonohedron, see
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daytime vision, 81
decomposition, 26
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diamond, 6
di�use reflection, see
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Lambertian

dilation, 181
direction, 165, 168, 174
discrete, 211
display gamut, ii, iii, 23, 134,

157–195, 198, 201,
204, 211

display spectrum cone, 202
dissection, iii, 195, 203–205,

207, 209, 212
dot product, 14

electromagnetic spectrum, see
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electromagnetic

electronic display, 195–212
electronic display gamut, see

display gamut
energy e�ciency, 203, 209, 212
equal-energy stimulus, 76, 77,

105, 110, 117
equality, 189
equivalence, 80, 86, 115, 116

class, 65
relationship, 80

Euclidean space, 5, 14, 16, 179
exposed point, 12, 16
exposure time, 173

field of view, 59, 77, 159
filter, 177
flicker photometry, 83
fluorescence, 70
foliation, 4, 15
Forsyth, David, 177, 179
functional, linear, see linear

functional

gain, 173
gamma correction, 197
gamut, see display gamut
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160, 177–183, 193

GBIE, see gamut-based
illuminant estimation
(GBIE)
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40, 45, 50, 56, 144,
172
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ideal di�use reflector, 72
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iridescence, 70

kernel, 4, 102, 185, 204
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Lambert, Johann, 67
Lambertian distribution, 67
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light, 61, 83
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144, 157, 160, 179,
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stimulus, 157
lighting, see illumination
lightness, 75, 79, 82, 106, 133
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linear programming, 12, 40,
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128, 130, 136, 149,
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spectrum, 72, 74,
120, 122, 138, 145,
149, 154, 165, 172,
175

Maxwell, James Clerk, 78

217



INDEX

measure theory, 61
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160, 183–193
set, 187–189, 191, 194
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100–101, 184
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48, 125

Minkowski sum, ii, iii, 17–23,
55, 136, 142, 195

mixture, 23
monitor, 81, 121, 179, 195–212
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78, 90, 107, 119, 125,
132, 135, 161, 163,
167, 196

monochromator, 66
multi-primary display, 195,

203–211
Munsell colour system, 81

night-time vision, 81
node, 27, 38, 208, 212

object, 67, 165, 171, 177, 192
object colour, see colour,

surface or object
object-colour solid, ii, 120,

135–144, 147, 150,
160, 161, 171, 174,
176, 210, 211

shape at origin, 139–143,
155, 174

observer metamerism,
204–209, 212

octant, 10, 24, 123, 125, 130,
147, 165, 178

olive, 77
optimal colour, see colour,

optimal
Optimal Colour Theorem, ii,

120, 147–149, 155,
172

optimization, 12, 40
orange, 76, 78, 129, 157, 177
Ostwald, Wilhelm, 144

parallelepiped, iii, 18, 29, 195,
198, 199, 203–206,
209, 212

parallelogram, ii, 18, 25, 29,
32, 47, 56, 206

path between two vectors, 5,
15

perception of colour, see
colour, perception

perimeter, 21
photopic luminous e�ciency,

see luminous
e�ciency

photopic luminous e�ciency
function, 83, 111,
116, 123, 127

photopic vision, 81
photoreceptor, 81, 161
phthalo blue, 84
physics, 59–74, 83
pixel, 161, 178, 195–197, 204,

211
polygon, 2, 11, 28, 36, 48, 123,

151
polyhedron, 2, 11
polytope, see convex polytope
power, 61, 64, 88
pre-image, 4, 14, 36, 40
primaries, 75, 82, 88–98, 105,

111, 132, 163, 169,
187
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of display, 195–198, 203,
210, 211

profile of cone, see cone,
profile

proper cone, see cone, proper
pseudo-inverse, 98, 111, 187
pull-back, 188, 190
purple line, 132

radiance, 69
radiation, electromagnetic, 61,

83
radiometric density, 60, 61, 63,

75, 98, 100
basis, 64

radiometry, 61
ray, 2, 8, 48, 120, 125, 128,

139, 147, 167, 169
ray, chromaticity, see

chromaticity ray
reflectance spectrum, ii, 60,

66–73, 84, 119, 121,
129, 135, 138, 144,
145, 147, 152, 155,
157, 159, 164, 171,
172, 183, 187, 192,
194, 211

basis for, 72
discretization, 151
optimal, 149, 151, 153,

210
reflection, 60, 71–74, 120

bulk, 69
first-surface, 69
Lambertian, 66–70, 121,

171, 178
specular, 67, 178

reflexivity, 80, 86, 115, 116
related colour, see

colour,related
response function, 124

retinal photoreceptor, see
cone, visual

RGB coordinates, 160, 161,
163, 165, 167, 171,
197

RGB monitor, 196

saturation, 60, 79, 81, 82, 113,
133, 144

scalar multiplication, 80, 87,
115, 116

scene, 59, 121, 135
Schrödinger form, ii, iii, 120,

123, 144–147, 149,
155, 210

Schrödinger, Erwin, ii, 144
scotopic vision, 81
sensor, iii, 124, 157–183

chromaticity diagram,
161, 168–171, 174,
176, 193

response functions,
161–165, 169, 171,
172, 176, 192, 193

spectrum cone, 161,
166–169, 174, 176,
193

spectrum locus, 160, 161,
164–166, 176, 181,
192

shadow series, 129–130, 144,
155, 169, 201

slack variable, 189
spectral power density (SPD),

61, 64, 67, 73, 157,
164, 169, 171, 173,
203, 211

spectrum
electromagnetic, 3
visible, 3, 60, 61, 63, 84

spectrum cone, ii, 120,
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176, 210

vector, ii, 137, 139, 145,
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sRGB, 198
Standard Observer, ii, 60, 78,

83, 96, 105, 115, 120,
154, 160, 204, 212

stimulus, see colour, stimulus
stimulus error, 76–78
substitution, law of, 80
superposition, 63, 78, 119,

160, 161, 196, 200
support of function, 145, 150
supporting hyperplane, see

hyperplane,
supporting

surface colour, see colour,
surface or object

symmetry, 80, 86, 115, 116

tetrahedron, 7, 9, 202
titanium white, 84
Toronto, University of, iii
transition, 120, 144, 145, 149
transitivity, 80, 87, 95, 115,

116
translation, 3, 18, 56
transmission, 67
triangle, 7, 20
trichromacy, 80, 115, 163
tristimulus coordinates, 88–98,

105, 110, 122, 126,
128, 132, 136, 160,

163, 167, 169, 204

value, Munsell, 81
vector space, 1, 14, 60, 63–64,

73
vector sum, see Minkowski

sum
vertex, 7, 11, 16, 188, 212
visual stimulus, see colour,

stimulus
von Kries hypothesis, 159

Watt, 61
wavelength, 61, 161
well-ordered in wavelength,

120, 123, 145, 147,
150, 154, 155, 165,
172, 210

West, Gerhard, 123
white, 173, 176, 198, 199, 203
whiteness constancy, 173
wraparound, 52, 145, 148
Wright-Guild data, 76, 89, 95,

96, 98, 103, 105, 111,
163

XY Z coordinates, see
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zonogon, 22, 24–28, 42, 55
area, 25
coordinates, 25
perimeter, 27
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Colour science draws on a variety of disciplines, including

physics, biology, human perception, mathematics, and art.

This book shows the part that geometry plays in reaching

some important conclusions in colour science.  Seemingly

disparate mathematical objects that arise in human vision,

machine vision, and electronic displays, are shown to share

a common form as zonohedra.  Their internal structures

all arise as Minkowski sums of vectors that correspond to

individual wavelengths in the visible spectrum. The processes

of light production, reflection, and response provide the

relationships that define those structures.

The first two chapters lay the geometric foundation for the

colour science introduced in the rest of the book.  Chapter

2 introduces Minkowski sums and zonohedra from first

principles, in more detail than has appeared previously. The

next two chapters deal with physical and perceptual aspects

of colour, deriving the 1931 Standard Observer from

empirical data.  The final three chapters build on the first

four to construct geometric objects for colour science,

and to derive conclusions from them.

The book assumes no knowledge of colour science.  Some

linear algebra is assumed, at about the second-year 

undergraduate level.  Even readers without this background,

however, will be able to follow the book's concrete, intuitive

presentation, which emphasizes spatio-visual understanding. 


